3D目标检测
文章平均质量分 94
3D Detection是自动驾驶领域的热门研究领域,从数据源分析,大概分为4类:基于雷达的、基于单目视觉、基于立体视觉的3D检测,或者基于融合的方法。
AI 菌
算法工程师一枚,CSDN博客专家;图像、语音、nlp算法跨界选手,欢迎一起交流学习!
展开
-
【Disp R-CNN解读】通过形状先验引导的立体三维目标检测实例视差估计
本文提出了一种新的立体图像三维目标检测系统 Disp R-CNN。原创 2021-12-01 21:19:52 · 3832 阅读 · 0 评论 -
【ZoomNet 解读】局部感知自适应缩放神经网络的三维目标检测
三维目标检测是自动驾驶和机器人技术中的一项重要任务。虽然已经取得了很大的进展,但在估算遥远和闭塞物体的三维姿态方面仍然存在挑战。原创 2021-11-25 21:39:40 · 3909 阅读 · 0 评论 -
【DSGN 解读】用于三维目标检测的深度立体几何网络
本文提供了一种简单有效的基于立体的单级三维检测管道,以端到端学习的方式联合估计深度和检测三维物体。原创 2021-11-19 21:19:39 · 3623 阅读 · 0 评论 -
【IDA-3D 解读】基于实例深度感知的自动驾驶立体视觉三维目标检测
本文提出了一种端到端的学习框架,用于自动驾驶中基于立体图像的三维目标检测。它既不依赖深度图像作为输入,也不依赖于训练,也不需要多级或后处理算法。原创 2021-11-09 10:20:22 · 4859 阅读 · 3 评论 -
【PointPillars 解读】用于点云目标检测的快速编码器
本文提出了一种新的用于 3D 目标检测的方法 PointPillars,它利用 PointNets 来学习组织在垂直列中的点云表示。原创 2021-08-28 14:52:09 · 9493 阅读 · 5 评论 -
【Stereo R-CNN 解读】基于立体R-CNN的自动驾驶三维目标检测
本文充分利用立体图像中的稀疏、密集、语义和几何信息,提出了一种用于自动驾驶的三维目标检测方法。我们的方法,称为 Stereo R-CNN,扩展了 Faster R-CNN 用于立体输入,以同时检测和关联左右图像中的目标。我们在立体区域建议网络(RPN)之后增加额外的分支来预测稀疏的关键点、视点和对象尺寸,并结合左右图像中的2D边界框来计算粗略的3D目标边界框。然后,我们通过使用左右感兴趣区域的基于区域的光度对齐来恢复准确的3D边界框。我们的方法不需要深度depth输入和3D位置监督,但是,它的性能优.原创 2021-11-06 11:15:40 · 3170 阅读 · 0 评论