图计算
文章平均质量分 95
数智笔记
目前从事数据挖掘工作,期望在自己学习总结的同时,也能分享有益的东西给别人,希望有志者能在数据挖掘领域共同进步
展开
-
什么是图数据库?
了解图数据库是什么以及它与传统关系数据库的区别。了解图形数据库的核心组件和架构。探索图数据库的优点和用例。深入了解如何有效地实施和查询图数据库。能够识别常见的图数据库技术及其应用。图形数据库用于存储和搜索元素之间存在连接状态的数据。而关系数据库以行和列的表格结构存储数据,字段之间的关系定义为键,图形数据库则以图形结构的形式存储数据。这种结构由节点(实体)、边(关系)和属性(构成动态数据图的实体属性)组成。它们是这些数据库的主要构建块。它们描述个人、公司甚至产品。原创 2024-09-06 21:36:48 · 863 阅读 · 0 评论 -
如何改善图形以增强机器学习模型的性能
首先,为了确定什么可以改善图形质量,我们必须定义一个好的图形。优秀图形的标准将取决于您使用图形的目的。如果您进行社区检测,优秀的图形往往比不同节点更强地连接相似节点。如果您进行节点分类,好的图形可以定义为允许机器学习算法在给定节点的邻居时预测类别的图形。查看节点影响力时,好的图形可以是那些高度影响力的节点具有较高度数的图形。好的图形会因任务而异,您应当为您的具体用例定义什么构成好的图形。在提高图形质量时,您应始终牢记这一点。原创 2024-09-04 20:46:24 · 1187 阅读 · 0 评论 -
一项关于图神经网络在时间序列中的应用的调查:预测、分类、填补和异常检测 A Survey on Graph Neural Networks for Time Series: Forecasting,
时间序列是记录动态系统测量值的主要数据类型,由物理传感器和在线过程(虚拟传感器)大量生成。因此,时间序列分析对于揭示可用数据中隐含的信息财富至关重要。随着图神经网络(GNNs)的最新进展,基于GNN的时间序列分析方法大幅增加。这些方法可以明确地建模时序和变量间的关系,而传统的和其他基于深度神经网络的方法则难以做到。在这项调查中,我们对图神经网络在时间序列分析中的应用进行了全面回顾(GNN4TS),涵盖了四个基本维度:预测、分类、异常检测和填补。原创 2024-04-07 13:06:51 · 814 阅读 · 0 评论 -
图数据科学的关键综述:图在科学研究中的力量 A key review on graph data science: The power of graphs in scientific studies
这篇全面的综述深入分析了图论、各种图类型以及图可视化在科学研究中的作用。图作为建模和分析各种学科中复杂系统的强大工具。引言突出了图在科学研究中作为视觉表达的重要性,有助于更好地理解复杂数据。信息图表和知识图在近年来因其传达信息的有效性而备受青睐。综述从探讨图论的基础开始,涵盖关键概念、算法和应用。它讨论了不同类型的图,包括有向图、无向图、加权图和二部图,以及它们在科学研究中的具体用例。特别关注特殊图,如完全图、树状图和社交网络,它们具有独特属性,在各种科学领域中发挥着重要作用。原创 2024-04-07 13:05:56 · 411 阅读 · 0 评论 -
基于图的大规模欺诈检测系统 A graph‑powered large‑scale fraud detection system
图驱动的欺诈检测在各个领域中都是一个常见问题,如电子商务、银行、保险和社交网络,这些领域的数据可以自然地表示为图结构。特别是在电子商务领域,由于其庞大规模和数以百万计商品的实时交易量,欺诈检测已经成为一个重要且严重的问题。挑战主要存在于三个方面:欺诈样本稀疏、在线交易中复杂的特征以及电子商务数据的超大规模。为了解决上述问题,在本文中,我们提出了一个高效的基于图的大规模欺诈检测框架。具体来说,我们首先提出了一种异构标签传播算法,以便召回更多潜在的欺诈样本用于进一步的模型训练;原创 2024-04-07 12:21:57 · 534 阅读 · 0 评论 -
异构图神经网络用于供应链金融中的欺诈检测和解释 Heterogeneous graph neural networks for fraud detection and explanation in s
发现供应链中的欺诈借款人对于金融服务提供商来说是一项至关重要的任务。对正在进行的业务中借款人的交易进行检查,以支持提供商是否放贷的决定。考虑到供应链业务中的多个参与者,借款人可能使用复杂的手段来欺骗,使欺诈检测变得具有挑战性。在这项工作中,我们提出了一个多任务学习框架,MultiFraud,用于复杂欺诈检测并提供合理的解释。基于异构图神经网络,在检测框架中利用来自实体周围多视图的异构信息。MultiFraud使多个领域能够共享嵌入并增强欺诈检测的建模能力。所开发的解释器提供了跨多个图的全面解释。原创 2024-04-06 15:07:21 · 839 阅读 · 0 评论 -
GNN现实应用问题综述 在现实世界中图神经网络的调查:不平衡、噪声、隐私和OOD挑战
图结构化数据在各个领域具有普遍性和广泛适用性,如社交网络分析、生物化学、金融欺诈检测和网络安全。在这些领域,利用图神经网络(GNNs)取得了显著进展,取得了令人瞩目的成功。然而,在现实世界的场景中,模型的训练环境往往远非理想,由于各种不利因素,包括数据分布的不平衡、错误数据中的噪声存在、敏感信息的隐私保护以及对于超出分布(OOD)场景的泛化能力,导致GNN模型的性能显著下降。为了解决这些问题,人们致力于改进GNN模型在实际现实世界场景中的性能,以及增强它们的可靠性和鲁棒性。原创 2024-04-04 21:00:55 · 1258 阅读 · 0 评论 -
初学者的图神经网络(GNNs) 设计GNNs的一般视角
图片来源:[] — 作者修改图神经网络(GNNs)已经成为处理图结构数据(如社交网络、推荐系统、引用网络等)的一种变革性方法。将传统神经网络适应图形所带来的挑战的演变,已经在各个领域取得了重大进展。在本文中,我们将讨论为什么需要将GNNs作为一组独立的方法。然后,我们将介绍基本概念,并为所有GNN算法提供一个通用框架。那么,让我们开始吧。原创 2024-02-29 07:51:04 · 1019 阅读 · 0 评论 -
用图分析进行欺诈检测 利用用例的网络结构提升预测性能
模块度分数衡量了将图聚类为多个社区的聚类的强度。为此,它将社区内边的浓度与所有节点之间的随机链接的分布进行比较,而不考虑社区。原创 2024-02-23 10:10:43 · 1105 阅读 · 0 评论