推荐系统
文章平均质量分 94
数智笔记
目前从事数据挖掘工作,期望在自己学习总结的同时,也能分享有益的东西给别人,希望有志者能在数据挖掘领域共同进步
展开
-
现代推荐系统使用生成模型综述 (Gen-RecSys) A Review of Modern Recommender Systems Using Generative Models (Gen-RecS
传统的推荐系统(RS)通常使用用户-物品评分历史作为主要数据来源,协同过滤是其中的主要方法之一。然而,生成模型最近已经发展出能够对复杂数据分布进行建模和采样的能力,这些数据分布不仅包括用户-物品互动历史,还包括文本、图像和视频,为新颖的推荐任务解锁了这些丰富的数据。通过这份全面的跨学科调查,我们旨在连接使用生成模型(Gen-RecSys)的RS的关键进展,包括:交互驱动生成模型的基础概述;使用大型语言模型(LLM)进行生成推荐、检索和对话推荐的应用;以及整合多模态模型来处理和生成RS中的图像和视频内容。原创 2024-04-12 13:06:15 · 738 阅读 · 0 评论 -
探究大型语言模型对推荐系统的影响综述 Exploring the Impact of Large Language Models on Recommender Systems: An Exten
本文强调了大型语言模型(LLMs)在重塑推荐系统中的重要性,将它们的价值归因于传统推荐系统所缺乏的独特推理能力。与缺乏直接用户交互数据的传统系统不同,LLMs在推荐物品方面表现出色,展示了它们在理解语言复杂性方面的熟练能力。这标志着推荐领域的根本性转变。在充满活力的研究领域中,研究人员积极利用LLMs的语言理解和生成能力来重新定义推荐任务的基础。该研究全面探讨了LLMs在推荐框架中固有优势,包括细致的语境理解、跨不同领域的无缝过渡、采用统一方法、利用共享数据储备的整体学习策略、透明的决策制定以及迭代改进。原创 2024-04-12 13:04:45 · 765 阅读 · 0 评论