1.Otter简介
1.1.项目介绍
名称:otter ['ɒtə(r)]
译意: 水獭,数据搬运工
语言: 纯java开发
定位: 基于数据库增量日志解析,准实时同步到本机房或跨机房的mysql/oracle数据库.
1.2.项目背景
阿里巴巴B2B公司,因为业务的特性,卖家主要集中在国内,买家主要集中在国外,所以衍生出了杭州和美国异地机房的需求,同时为了提升用户体验,整个机房的架构为双A,两边均可写,由此诞生了otter这样一个产品。
otter第一版本可追溯到04~05年,此次外部开源的版本为第4版,开发时间从2011年7月份一直持续到现在,目前阿里巴巴B2B内部的本地/异地机房的同步需求基本全上了otte4。
1.3.Otter原理
图片来自Otter
db : 数据源以及需要同步到的库
Canal : 用户获取数据库增量日志
manager : 配置同步规则设置数据源同步源等
zookeeper : 协调node进行协调工作
node : 负责任务处理处理接受到的部分同步工作
1.基于Canal开源产品,获取数据库增量日志数据。 什么是Canal, 请 点击
2.典型管理系统架构,manager(web管理)+node(工作节点)
manager运行时推送同步配置到node节点
node节点将同步状态反馈到manager上
3.基于zookeeper,解决分布式状态调度的,允许多node节点之间协同工作.
1.4.Otter特性
1.异构库同步
mysql -> mysql/oracle.(目前开源版本只支持mysql增量,目标库可以是mysql或者oracle,取决于canal的功能)
2.单机房同步 (数据库之间RTT < 1ms)
数据库版本升级
数据表迁移
异步二级索引
3.跨机房同步 (比如阿里巴巴国际站就是杭州和美国机房的数据库同不,RTT > 200ms)
机房容灾
4.双向同步
避免回环算法(通用的解决方案,支持大部分关系型数据库)
数据一致性算法(保证双A机房模式下,数据保证最终一致性, 亮点)
5.文件同步
站点镜像(进行数据复制的同时,复制关联的图片,比如复制产品数据,同时复制产品图片).
跨机房复制示意图
图片来自网络
数据涉及网络传输,S/E/T/L几个阶段会分散在2个或者更多Node节点上,多个Node之间通过zookeeper进行协同工作 (一般是Select和Extract在一个机房的Node,Transform/Load落在另一个机房的Node)
node节点可以有failover / loadBalancer. (每个机房的Node节点,都可以是集群,一台或者多台机器)
1.1.项目介绍
名称:otter ['ɒtə(r)]
译意: 水獭,数据搬运工
语言: 纯java开发
定位: 基于数据库增量日志解析,准实时同步到本机房或跨机房的mysql/oracle数据库.
1.2.项目背景
阿里巴巴B2B公司,因为业务的特性,卖家主要集中在国内,买家主要集中在国外,所以衍生出了杭州和美国异地机房的需求,同时为了提升用户体验,整个机房的架构为双A,两边均可写,由此诞生了otter这样一个产品。
otter第一版本可追溯到04~05年,此次外部开源的版本为第4版,开发时间从2011年7月份一直持续到现在,目前阿里巴巴B2B内部的本地/异地机房的同步需求基本全上了otte4。
1.3.Otter原理
图片来自Otter
db : 数据源以及需要同步到的库
Canal : 用户获取数据库增量日志
manager : 配置同步规则设置数据源同步源等
zookeeper : 协调node进行协调工作
node : 负责任务处理处理接受到的部分同步工作
1.基于Canal开源产品,获取数据库增量日志数据。 什么是Canal, 请 点击
2.典型管理系统架构,manager(web管理)+node(工作节点)
manager运行时推送同步配置到node节点
node节点将同步状态反馈到manager上
3.基于zookeeper,解决分布式状态调度的,允许多node节点之间协同工作.
1.4.Otter特性
1.异构库同步
mysql -> mysql/oracle.(目前开源版本只支持mysql增量,目标库可以是mysql或者oracle,取决于canal的功能)
2.单机房同步 (数据库之间RTT < 1ms)
数据库版本升级
数据表迁移
异步二级索引
3.跨机房同步 (比如阿里巴巴国际站就是杭州和美国机房的数据库同不,RTT > 200ms)
机房容灾
4.双向同步
避免回环算法(通用的解决方案,支持大部分关系型数据库)
数据一致性算法(保证双A机房模式下,数据保证最终一致性, 亮点)
5.文件同步
站点镜像(进行数据复制的同时,复制关联的图片,比如复制产品数据,同时复制产品图片).
跨机房复制示意图
图片来自网络
数据涉及网络传输,S/E/T/L几个阶段会分散在2个或者更多Node节点上,多个Node之间通过zookeeper进行协同工作 (一般是Select和Extract在一个机房的Node,Transform/Load落在另一个机房的Node)
node节点可以有failover / loadBalancer. (每个机房的Node节点,都可以是集群,一台或者多台机器)