思想:利用物品间的相似度,给用户推荐与用户过去行为物品相似的物品。
资源:用户物品评分矩阵(填空,即对用户没有过评分的物品进行预测打分)
算法目标:寻找与当前用户喜欢的物品相似的K个物品,将其推荐给当前用户
物品相似度评测:改进的余弦相似度
U={u1,u2,...,un}表示用户集,用R表示n*m的评分矩阵,rij代表评分项,表示用户i对物品j的评分。表示用户评分平均值,目的是避免一些用户倾向于打高分,而一些用户倾向于打低分。
公式分子可以理解为:两个物品有共同评分的用户。
预测用户u对物品p的评分:
其中,物品i与物品p为相似物品,且用户u对物品i有过评分。
同样的, 将得到的用户对物品的评分进行排序,选取合适数目的物品进行推荐。对于K值得选取,可以根据实际需要进行训练得到。