基于物品的协同过滤推荐

该博客探讨了基于物品的协同过滤推荐系统,通过计算物品之间的相似度来预测用户评分并进行个性化推荐。算法核心是改进的余弦相似度来评估物品相似性,并使用用户历史评分来预测对未评分物品的喜好。推荐过程中选择与用户喜好物品相似的K个物品进行推荐。
摘要由CSDN通过智能技术生成

思想:利用物品间的相似度,给用户推荐与用户过去行为物品相似的物品。

资源:用户物品评分矩阵(填空,即对用户没有过评分的物品进行预测打分

算法目标:寻找与当前用户喜欢的物品相似的K个物品,将其推荐给当前用户

物品相似度评测:改进的余弦相似度

U={u1,u2,...,un}表示用户集,用R表示n*m的评分矩阵,rij代表评分项,表示用户i对物品j的评分。表示用户评分平均值,目的是避免一些用户倾向于打高分,而一些用户倾向于打低分。

公式分子可以理解为:两个物品有共同评分的用户。

预测用户u对物品p的评分:

其中,物品i与物品p为相似物品,且用户u对物品i有过评分。

同样的, 将得到的用户对物品的评分进行排序,选取合适数目的物品进行推荐。

对于K值得选取,可以根据实际需要进行训练得到。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值