题意
给你n道题,在你做第
i
i
道题的时候有
p[j]
p
[
j
]
个前置条件,当这些前置条件都满足的时候,我们可以得到
a[j]∗t+b[j]
a
[
j
]
∗
t
+
b
[
j
]
的价值,
t
t
,表示的是你现在已经做了几道题,问你怎样规划可以得到的权值最大。
思路
状压,
dp[state]
d
p
[
s
t
a
t
e
]
表示的是当前状态下,可以得到的最大权值,那么对于一个状态,他在做第j道题的时候当他满足他的所有前置条件的时候,那么他肯定是由第
j
j
位是0的状态加上完成这道题所获得的权值转移过来的,至于他当前做了几道题这个问题,我们可以预处理出每种状态下的个数,有多少个
1
1
<script type="math/tex" id="MathJax-Element-137">1</script>就表明他做了几道题。
代码
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define int long long
using namespace std;
int a[22] , b[22] , z[22];
int num[1<<22] , dp[1<<22];
void init()
{
memset(num,0,sizeof(num));
for(int i = 1 ; i <= (1<<22) ; i++) num[i] = 1 + num[i&(i-1)]; // 预处理出所有状态中1的数量
}
signed main()
{
int n , c;
init();
scanf("%lld",&n);
for(int i = 0 ; i < n ; i++)
{
scanf("%lld%lld%lld",&a[i],&b[i],&c);
int state = 0 , t;
for(int j = 0 ; j < c ; j++)
{
scanf("%lld",&t);
state = state | (1<<(t-1));
}
z[i] = state; // z[i]表示的是做第i道题的前置条件
}
memset(dp,-INF,sizeof(dp));
dp[0] = 0;
int ans = 0;
for(int state = 0 ; state < (1<<n) ; state++)
{
if(dp[state] == -INF) continue;
ans = max(ans,dp[state]);
for(int j = 0 ; j < n ;j++)
{
if(state & (1<<j)) continue;
if((state & z[j]) != z[j]) continue; //当他的所有前置条件都满足的情况下
dp[state|(1<<j)] = max(dp[state|(1<<j)] , dp[state] + (num[state]+1)*a[j] + b[j]);
}
}
cout<<ans<<endl;
}