关于快速傅立叶变换中单位根概念的一点思考

本文探讨了快速傅立叶变换(FFT)中的单位根概念。作者最初对这一概念感到困惑,后来通过深入理解发现,单位根的本质在于复数的幂运算。作者指出,每个复数点经过平方后角度会翻倍,当角度变为整数倍时,复数就落在实轴上,即1。这一过程揭示了FFT中周期性和指数增长的数学原理。
摘要由CSDN通过智能技术生成

关于快速傅立叶变换中单位根概念的一点思考

在阅读十分简明易懂的FFT一文中,针对其中单位根概念,我一开始并未读懂,后来随着文章阅读和自己的思考,稍微有了一些小想法,在这里指出请大家指正。

img

文中指出,图中的所有的点都能在n次乘方后等于1,

但文章中给出的原因是因为 s i n 2 x + c o s 2 x = 1 sin^2x+cos^2x=1 sin2x+cos2x=1,但是实际上我认为并不是因为这样,而是因为:
( c o s x + i s i n x ) 2 = ( c o s 2 x − s i n 2 x ) + i ( c o s x s i n x + s i n x c o s x ) = ( c o s 2 x ) + i ( s i n 2 x ) (cosx+isinx)^2 =(cos^2x-sin^2x)+i(cosxsinx+sinxcosx) =(cos2x)+i(sin2x) (cosx+isinx)2=(cos2xsin2x)+i(cosxsinx+sinxcosx)=(cos2x)+i(sin2x)

看,这就意味着上图中任意一个点平方之后角度会翻一倍,也就是说任取一个角度,不停翻倍不停翻倍,早晚会翻出来一个整数圆的,而此时在坐标系中表示就是1+i*0,也就是整数1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值