关于快速傅立叶变换中单位根概念的一点思考
在阅读十分简明易懂的FFT一文中,针对其中单位根概念,我一开始并未读懂,后来随着文章阅读和自己的思考,稍微有了一些小想法,在这里指出请大家指正。
文中指出,图中的所有的点都能在n次乘方后等于1,
但文章中给出的原因是因为
s
i
n
2
x
+
c
o
s
2
x
=
1
sin^2x+cos^2x=1
sin2x+cos2x=1,但是实际上我认为并不是因为这样,而是因为:
(
c
o
s
x
+
i
s
i
n
x
)
2
=
(
c
o
s
2
x
−
s
i
n
2
x
)
+
i
(
c
o
s
x
s
i
n
x
+
s
i
n
x
c
o
s
x
)
=
(
c
o
s
2
x
)
+
i
(
s
i
n
2
x
)
(cosx+isinx)^2 =(cos^2x-sin^2x)+i(cosxsinx+sinxcosx) =(cos2x)+i(sin2x)
(cosx+isinx)2=(cos2x−sin2x)+i(cosxsinx+sinxcosx)=(cos2x)+i(sin2x)
看,这就意味着上图中任意一个点平方之后角度会翻一倍,也就是说任取一个角度,不停翻倍不停翻倍,早晚会翻出来一个整数圆的,而此时在坐标系中表示就是1+i*0,也就是整数1。