zookeeper的产生背景和概念

zookeeper:
    背景
        集中式管理
        集中式的一致性问题
        mysql---事务
        
        分布式概念
            分布式如何保证数据一致性问题?
                多个节点之间如何做到各个节点的数据或状态的一致性
                1)hadoop的ha   两个namenode  两个namenode
                实时的数据同步  数据一致
                2)hadoop的ha 两个namenode  一个active  一个standby的
                状态一致  standby实时的获取 active的状态信息
                3)hadoop的节点3个节点   3个节点配置文件同步的  
                远程发送   集群500个   延时性太长
        zookeeper就是解决分布式一致性问题  分布式协调(一致)服务
        目前zookeeper是没有取代方案的  目前解决分布式一致性问题的
        最完美的解决方案
        
    分布式一致性的发展:
        CAP理论:
            绝对完美的一致性理论
        C:Consistency,一致性: 多个副本保持一致   强一致性  实时一致性
            一致性:
                强一致性:写入什么  就能读取什么  写操作完成  
                        从其他任意备份立即可以读取
                弱一致性:尽量保证写什么  读什么  保证绝大部分
                最终一致性:弱一致性的一个特殊情况
                    在一定的时间延迟内  写数据的 所有的副本可以达到数据一致
                    最终肯定所有的副本保证数据一致的
            一致性最高:只有一个副本
                副本数量越多   一致性越难保证
        A:Availability,可用性:  高可用
            系统提供的服务必须一直处于可用,
            对于用户的每一个操作请求总是能在有限时间内返回结果
            系统实时对外提供服务  即使存在节点宕机
            
            可用性最高的时候:所有节点存储的都有副本
                副本越多  可用性越高
        P:Partition Tolerance分区容错性:
        分布式系统在遇到任何网络分区故障时,
        仍然需要能够保证对外提供满足一致性和可用性的服务        
        hdfs的副本策略
        
        C和A 是冲突的  不可同时满足的  实践上不能达到的
        
        要想实现CAP理论   在C 和A 之间平衡
        
        
        BASE理论:
            将c  a做了平衡
            c----最终一致性
            a----基本可用性
            Basically Available:基本可用
                相应时间的损失
                功能上的损失
            Soft State:软状态
                允许存在不同节点同步数据时出现延迟,
                且出现数据同步延迟时存在的中间状态也不会
                影响系统的整体性能。
                
                允许时间延迟
            Eventually Consistent:最终一致性
                系统中所有数据副本,在经过一段时间后,
                都可以达到同步:要求最终达到一致,而不是实时一致
                
        Quorum NRW:保证数据安全的算法

            quorum机制是分布式场景中常用的,
            用来保证数据安全,
            并且在分布式环境中实现最终一致性的投票算法

            N: 复制的节点数,即一份数据被保存的份数。
            R: Read 成功读操作的最小节点数,即每次读取成功需要的份数。
            W: Write 成功写操作的最小节点数 ,即每次写成功需要的份数。
            
            R+W>N
            
            1)W=1  R=N
            2)R=1  W=N
            
            R W 权衡:
            N=10
            W=5
            R=6
            
            W=6
            R=5
            W=N/2+1
            R=N/2
            过半写入
        paxos算法:选举算法
            来源希腊的帮主选举
            一半以上的选民投票
            过半选举的机制
                这个算法的一个最完美的实现就是zookeeper
                其他的实现都是不完美的实现
    zookeeper是什么
        分布式一致性算法的
        ZooKeeper  Google 的 Chubby
        一个开源的实现。它提供了简单原始的功能,分是一个分布式的,开放源码的分布式应用程序协调服务,是布式应用可以基于它实现更高级的服务,比
        如分布式同步,配置管理,集群管理,命名管理,队列管理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值