本文对横向滤波器作以介绍,如有表述不当之处欢迎批评指正。欢迎任何形式的转载,但请务必注明出处。
1. 横向滤波器
1.1. 概念
横向滤波器(transversal filter),也称抽头延迟线滤波器(tapped-delay line filter)或有限脉冲响应滤波器(fir filter),是自适应滤波器中最常用的一种滤波器结构。其结构如图1 所示,可以看出,每输入一个数据 u ( n ) u(n) u(n) 横向滤波器对应地输出一个数据 y ( n ) y(n) y(n)。
它由三个基本单元组成:单位延迟单元(
z
−
1
z^{-1}
z−1),乘法器和加法器。
w
m
w_m
wm 称为滤波器的系数或抽头权值。
u
(
n
)
u(n)
u(n) 经过单位延迟单元后的结果是
u
(
n
−
1
)
u(n-1)
u(n−1)。延迟单元的个数通常称为滤波器的阶数。
根据横向滤波器的结构可得当
u
(
n
)
u(n)
u(n) 进入到滤波器的时候,滤波器的输出为:
y
(
n
)
=
∑
m
=
0
M
w
m
u
(
n
−
m
)
(1)
y(n)=\sum_{m=0}^Mw_mu(n-m)\tag{1}
y(n)=m=0∑Mwmu(n−m)(1)
其中
n
n
n 表示时刻,
M
M
M 为滤波器的阶数,
w
m
w_m
wm 为第
m
m
m 个抽头线上的权值,
u
(
n
−
m
)
u(n-m)
u(n−m) 表示
n
n
n 时刻横向滤波器第
m
m
m 个抽头线上的输入数据。亦可将其表示成向量内积的形式,令
u
⃗
(
n
)
\vec{u}(n)
u(n) 表示
n
n
n 时刻的滤波器输入向量(即
n
n
n 时刻滤波器每个抽头输入组成的列向量),
w
⃗
(
n
)
\vec{w}(n)
w(n) 表示
n
n
n 时刻的抽头权向量(即
n
n
n 时刻滤波器每个抽头权值组成的列向量),则:
y
(
n
)
=
u
⃗
T
(
n
)
w
⃗
(
n
)
(2)
y(n) = \vec{u}^T(n) \vec{w}(n)\tag{2}
y(n)=uT(n)w(n)(2)
1.2. 举例
假设进入横向滤波器的数据按照时间先后顺序依次为:
1
,
2
,
3
,
4
,
5
1, 2, 3, 4, 5
1,2,3,4,5
横向滤波器的系数从左到右依次为:
5
,
6
,
7
5, 6, 7
5,6,7
可知此例中,横向滤波器的阶数为
2
2
2,长度为
3
3
3(横向滤波器的长度比它的阶数大
1
1
1 )。对照着横向滤波器的结构图可知:
在数字 3 3 3 到来的时候,滤波器的输出为: 3 ∗ 5 + 2 ∗ 6 + 1 ∗ 7 = 34 3 * 5 + 2 * 6 + 1 * 7 = 34 3∗5+2∗6+1∗7=34
在数字 4 4 4 到来的时候,滤波器的输出为: 4 ∗ 5 + 3 ∗ 6 + 2 ∗ 7 = 52 4 * 5 + 3 * 6 + 2 * 7 = 52 4∗5+3∗6+2∗7=52
在数字 5 5 5 到来的时候,滤波器的输出为: 5 ∗ 5 + 4 ∗ 6 + 3 ∗ 7 = 70 5 * 5 + 4 * 6 + 3 * 7 = 70 5∗5+4∗6+3∗7=70
由以上例子可以更进一步理解单位延迟单元的作用,即取其输入数据的前一时刻的数据。
2. 参考文献
[1] 《自适应滤波器原理》(第五版) 原作者:Simon Haykin