pytorch
wjsjjss
这个作者很懒,什么都没留下…
展开
-
4 模型训练与验证
构造验证集:避免过拟合与欠拟合的发生。尤其是过拟合,过拟合 的情况是数据集太少,差别不是太大本次数据集已经分好,只要训练测试集。训练集和验证集分开的,验证训练集的方法:将训练集划分为K份,其中K-1份作为训练集,剩余的一份作为验证集,循环K训练。这种划分方式是所有的训练集都是验证集,最终模型验证精度是K份平均得到。这种方式的有点是验证集精度比较可靠稳定,训练K次得到K个多样性差异模型,CV验证缺点是需要训练K次,不适合数据量恒大情况。解决过拟合和欠拟合的方法1增加数据:比如通过数原创 2020-05-30 23:00:18 · 448 阅读 · 0 评论 -
字符识别模型——CNN模型构建
字符识别模型——CNN模型构建这个CNN模型包括两个卷积层,最后并联6个全连接层进行分类。构建代码:import torchtorch.manual_seed(0)torch.backends.cudnn.deterministic = Falsetorch.backends.cudnn.benchmark = Trueimport torchvision.models as modelsimport torchvision.transforms as transformsimp原创 2020-05-26 21:27:31 · 522 阅读 · 0 评论 -
数据读取与数据扩增
数据读取与数据扩增图像读取 OpenCV读取图片 OpenCV显示图片 数据扩增 数据扩增方法 常用的数据扩增库 pytorch读取数据 重载Dataset 定义Dataset 图像读取OpenCV读取图片import cv2# 导入Opencv库img = cv2.imread('cat.jpg')# Opencv默认颜色通道顺序是BRG,转换一下img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)使用cv.原创 2020-05-23 22:49:48 · 232 阅读 · 0 评论 -
循环神经网络知识要点笔记
循环神经网络基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量HHH,用HtH_{t}Ht表示HHH在时间步ttt的值。HtH_{t}Ht的计算基于XtX_{t}Xt和Ht−1H_{t-1}Ht−1,可以认为HtH_{t}Ht记录了到当前字符为止的序列信息,利用HtH_{t}Ht对序列的下一个字符进行预测。假设Xt∈Rn×dX_{t}\in \mat...原创 2020-02-14 11:52:32 · 217 阅读 · 0 评论 -
多层感知机要点笔记
多层感知机的基本知识给定一个小批量样本,其批量大小为n,输入个数为d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为,有。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为和,输出层的权重和偏差参数分别为和。单隐藏层的多层感知机其输出的计算为<center></center><...原创 2020-02-13 15:52:28 · 404 阅读 · 0 评论 -
softmax回归知识要点笔记
softmax的基本概念softmax回归同线性回归一样,也是一个单层神经网络。softmax回归的输出层也是一个全连接层。分类问题需要得到离散的预测输出,一个简单的办法是将输出值当作预测类别是i的置信度,并将值最大的输出所对应的类作为预测输出,即输出。输出问题直接使用输出层的输出有两个问题:一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。另一方面,...原创 2020-02-12 12:59:21 · 452 阅读 · 0 评论 -
线性回归要点笔记
线性回归的基本要素¶模型线性回归假设输出与各个输入之间是线性关系数据集在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set)用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。损失函数在模型训练中,我们需要衡量预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差...原创 2020-02-12 11:22:50 · 302 阅读 · 0 评论