深度学习
文章平均质量分 91
wjsjjss
这个作者很懒,什么都没留下…
展开
-
助力精准气象和海洋预测笔记
竞赛题目发生在热带太平洋上的厄尔尼诺-南方涛动(ENSO)现象是地球上最强、最显著的年际气候信号。通过大气或海洋遥相关过程,经常会引发洪涝、干旱、高温、雪灾等极端事件,对全球的天气、气候以及粮食产量具有重要的影响。准确预测ENSO,是提高东亚和全球气候预测水平和防灾减灾的关键。本次赛题是一个时间序列预测问题。基于历史气候观测和模式模拟数据,利用T时刻过去12个月(包含T时刻)的时空序列(气象因子),构建预测ENSO的深度学习模型,预测未来1-24个月的Nino3.4指数,如下图所示:图1 赛原创 2021-02-25 08:54:37 · 374 阅读 · 0 评论 -
NLP-新闻文本分类(六、基于深度学习的文本分类3
BERT微调将最后一层的第一个token即[CLS]的隐藏向量作为句子的表示,然后输入到softmax层进行分类。import loggingimport randomimport numpy as npimport torchlogging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')# set seedseed = 666random.seed(seed原创 2020-08-04 23:16:26 · 535 阅读 · 0 评论 -
NLP-基于深度学习的文本分类2
Word2Vec文本法Word2Vec词向量word2vec模型背后的基本思想是对出现在上下文环境里的词进行预测。对于每一条输入文本,选取一个上下文窗口和一个中心词,并基于这个中心词去预测窗口里其他词出现的概率。因此,word2vec模型可以方便地从新增语料中学习到新增词的向量表达,是一种高效的在线学习算法(online learning)。word2vec的主要思路:通过单词和上下文彼此预测,对应的两个算法分别为:Skip-grams (SG):预测上下文 Continuous Bag o原创 2020-07-31 21:24:52 · 318 阅读 · 0 评论 -
NLP 基于深度学习的文本分类1
基于深度学习的文本分类与传统机器学习不同,深度学习既提供特征提取功能,也可以完成分类的功能。本文将学习如何使用深度学习来完成文本表示。学习目标 学习FastText的使用和基础原理 学会使用验证集进行调参 现有文本表示方法的缺陷之前介绍几种文本表示方法:One-hotBag of WordsN-gramTF-IDF也通过sklean进行了相应的实践,相信你也有了初步的认知。但上述方法都或多或少存在一定的问题:转换得到的向量维度很高,需要较长的训练实践;没有原创 2020-07-27 22:21:26 · 390 阅读 · 0 评论 -
NLIP - ML-based 文本分类
ML-based 文本分类基于sklearn的one-hot向量表示示例from sklearn.feature_extraction.text import CountVectorizercorpus = [ 'This is the first document.', 'This document is the second document.', 'And this is the third one.', 'Is this the first doc..原创 2020-07-25 22:20:59 · 318 阅读 · 0 评论 -
NLP - Task2 数据读取与数据分析
数据读取import pandas as pdimport matplotlib.pyplot as pltts_path = './Datawhale/nlp/train_set.csv'train_df = pd.read_csv(ts_path, encoding= 'unicode_escape',sep='\t',nrows= 100)#UTF-8对train_set.csv解码错误了,使用encoding= 'unicode_escape'print(train_df.hea原创 2020-07-22 22:15:17 · 115 阅读 · 0 评论 -
NLP之新闻文本分类--赛题理解
NLP之新闻文本分类--赛题理解天池零基础入门NLP之新闻文本分类赛题理解赛题名称:零基础入门NLP之新闻文本分类赛题目标:通过这道赛题可以引导大家走入自然语言处理的世界,带大家接触NLP的预处理、模型构建和模型训练等知识点。赛题任务:赛题以自然语言处理为背景,要求选手对新闻文本进行分类,这是一个典型的字符识别问题。学习目标理解赛题背景与赛题数据完成赛题报名和数据下载,理解赛题的解题思路赛题数据赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并.原创 2020-07-21 23:10:57 · 262 阅读 · 0 评论 -
5 模型集成
5 模型集成(一)集成学习集成方法是将几种机器学习技术组合成一个预测模型的元算法,以达到减小方差(bagging)、偏差(boosting)或改进预测(stacking)的效果。集成学习在各个规模的数据集上都有很好的策略。数据集大: 划分成多个小数据集,学习多个模型进行组合数据集小: 利用Bootstrap方法进行抽样,得到多个数据集,分别训练多个模型再进行组合首先将PPM(二)深度学习中的集成学习思路的技巧1. Drop outDropout可以作为训练深度神经网络的一种tri.原创 2020-06-02 21:14:54 · 166 阅读 · 0 评论 -
样式迁移笔记
样式迁移如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不同的组合,其复杂程度不亚于模型调参。在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)[1]。这里我们需要两张输入图像,一张...原创 2020-02-22 19:05:05 · 476 阅读 · 0 评论 -
目标检测和边界框笔记
锚框目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素为中心生成多个大小和宽高比(aspect ratio)不同的边界框。这些边界框被称为锚框(anchor box)。我们将在...原创 2020-02-22 18:47:23 · 1394 阅读 · 0 评论 -
GAN和DCGAN
Generative Adversarial Networks生成式对抗网络GAN的体系结构如图所示。在GAN架构中有两个部分:1生成器(generator)网络能够生成看起来像真实的数据。;2鉴别器(discrimiator)网络试图区分虚假数据和真实数据。这两个网络都在互相竞争。生成器网络试图欺骗鉴别器网络。这时,鉴别器网络就会适应新的假数据。这些信息反过来又用于改进生成器。鉴...原创 2020-02-22 18:13:02 · 2508 阅读 · 0 评论 -
文本分类笔记
文本情感分类文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。同搜索近义词和类比词一样,文本分类也属于词嵌入的下游应用。在本节中,我们将应用预训练的词向量和含多个隐藏层的双向循环神经网络与卷积神经网络,来判断一段不定长的文本序列中包含的是正面还是负面的情绪。后...原创 2020-02-21 17:10:34 · 304 阅读 · 0 评论 -
词嵌入基础笔记
使用 one-hot 向量表示单词,虽然它们构造起来很容易,但通常并不是一个好选择。一个主要的原因是,one-hot 词向量无法准确表达不同词之间的相似度,如我们常常使用的余弦相似度。Word2Vec 词嵌入工具的提出正是为了解决上面这个问题,它将每个词表示成一个定长的向量,并通过在语料库上的预训练使得这些向量能较好地表达不同词之间的相似和类比关系,以引入一定的语义信息。基于两种概率模型的假设...原创 2020-02-21 15:56:41 · 798 阅读 · 0 评论 -
Transformer笔记
Transformer在主流的神经网络架构如卷积神经网络(CNNs)和循环神经网络(RNNs)中:CNNs 易于并行化,却不适合捕捉变长序列内的依赖关系。 RNNs 适合捕捉长距离变长序列的依赖,但是却难以实现并行化处理序列。为了整合CNN和RNN的优势,[Vaswani et al., 2017]创新性地使用注意力机制设计了Transformer模型。该模型利用attention机...原创 2020-02-18 15:21:29 · 4403 阅读 · 0 评论 -
注意力机制和Seq2seq模型笔记
注意力机制在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化...原创 2020-02-18 14:35:29 · 718 阅读 · 0 评论 -
机器翻译笔记
机器翻译和数据集机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。字符在计算机里是以编码的形式存在,我们通常所用的空格是 \x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。 而 \xa0 属于 latin1 (ISO/IEC_8...原创 2020-02-18 12:39:39 · 201 阅读 · 0 评论 -
卷积神经网络基础
卷积神经网络基础¶本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。二维卷积层本节介绍的是最常见的二维卷积层,常用于处理图像数据。二维互相关运算二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷...原创 2020-02-17 21:41:43 · 358 阅读 · 0 评论 -
梯度消失、梯度爆炸笔记
梯度消失和梯度爆炸深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。当神经网络的层数较多时,模型的数值稳定性容易变差。假设一个层数为L的多层感知机的第层的权重参数为,输出层的权重参数为。为了便于讨论,不考虑偏差参数,且设所有隐藏层的激活函数为恒等映射(identity mapping)ϕ(x)=x。给定输入X,多层感知机的第l层的输出。此时,如果...原创 2020-02-17 20:34:06 · 164 阅读 · 0 评论 -
过拟合、欠拟合及其解决方案笔记
模型选择、过拟合和欠拟合训练误差和泛化误差训练误差(training error)和泛化误差(generalization error):通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。...原创 2020-02-17 20:07:20 · 194 阅读 · 0 评论 -
循环神经网络知识要点笔记
循环神经网络基于当前的输入与过去的输入序列,预测序列的下一个字符。循环神经网络引入一个隐藏变量HHH,用HtH_{t}Ht表示HHH在时间步ttt的值。HtH_{t}Ht的计算基于XtX_{t}Xt和Ht−1H_{t-1}Ht−1,可以认为HtH_{t}Ht记录了到当前字符为止的序列信息,利用HtH_{t}Ht对序列的下一个字符进行预测。假设Xt∈Rn×dX_{t}\in \mat...原创 2020-02-14 11:52:32 · 217 阅读 · 0 评论 -
多层感知机要点笔记
多层感知机的基本知识给定一个小批量样本,其批量大小为n,输入个数为d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为,有。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为和,输出层的权重和偏差参数分别为和。单隐藏层的多层感知机其输出的计算为<center></center><...原创 2020-02-13 15:52:28 · 404 阅读 · 0 评论 -
softmax回归知识要点笔记
softmax的基本概念softmax回归同线性回归一样,也是一个单层神经网络。softmax回归的输出层也是一个全连接层。分类问题需要得到离散的预测输出,一个简单的办法是将输出值当作预测类别是i的置信度,并将值最大的输出所对应的类作为预测输出,即输出。输出问题直接使用输出层的输出有两个问题:一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。另一方面,...原创 2020-02-12 12:59:21 · 452 阅读 · 0 评论 -
线性回归要点笔记
线性回归的基本要素¶模型线性回归假设输出与各个输入之间是线性关系数据集在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set)用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。损失函数在模型训练中,我们需要衡量预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差...原创 2020-02-12 11:22:50 · 302 阅读 · 0 评论