POJ3281 Dining【网络流】

题意:一头牛喜欢某种食物或饮料,问最多让几头牛同时拥有食物和饮料


思路:把牛拆成两个点, 保证每头牛只算一次,起点 → 食物 牛入点 牛出点 饮料 汇点,求最大流。用一下Dinic的模板.

不知道下面的普通的最大流为什么过不了,有人知道吗,请留言


#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<list>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<algorithm>
#include<numeric>
#include<functional>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn = 505; 

struct edge {int to,cf,rev;};
vector<edge> G[maxn];
int lev[maxn],iter[maxn];

void init(int x)
{
	for(int i = 0; i <= x; i++)
		G[i].clear();
}

void add(int from, int to, int cap)
{
	G[from].push_back((edge){to,cap,G[to].size()});
	G[to].push_back((edge){from,0,G[from].size()-1});
}

void bfs(int s)
{
	memset(lev,-1,sizeof lev);
	queue<int> q;
	lev[s] = 0;
	q.push(s);
	while(!q.empty())
	{
		int v = q.front();q.pop();
		for(int i = 0; i < G[v].size(); i++)
		{
			edge &e = G[v][i];
			if(e.cf > 0 && lev[e.to] < 0)
			{
				lev[e.to] = lev[v] + 1;
				q.push(e.to);
			}
		}
	}
}

int dfs(int v,int t, int f)
{
	if(v == t) return f;
	for(int &i = iter[v]; i < G[v].size(); i++)
	{
		edge &e = G[v][i];
		if(e.cf > 0 && lev[v] < lev[e.to])
		{
			int d = dfs(e.to, t, min(f,e.cf));
			if(d > 0)
			{
				e.cf -= d;
				G[e.to][e.rev].cf += d;
				return d;
			}
		}
	}
	return 0;
}

int maxflow(int s,int t)
{
	int flow = 0;
	while(1)
	{
		bfs(s);
		if(lev[t] < 0) return flow;
		memset(iter,0,sizeof iter);
		int f;
		while((f = dfs(s,t,0x3f3f3f3f)) > 0)
			flow += f;
	}
}

int main(void)
{
	int n,d,f;
	while(scanf("%d%d%d",&n,&f,&d)!=EOF)
	{
		init(2*n+f+d+5);
		for(int i = 0; i < n; i++)
		{
			int a,b,k;
			scanf("%d%d",&a,&b);
			while(a--)
			{
				scanf("%d",&k);
				add(k,f+1+2*i,1);
			}
			while(b--)
			{
				scanf("%d",&k);
				add(f+1+2*i+1,f+2*n+k,1);
			}
		}
		for(int i = 1; i <= f; i++)
			add(0,i,1);
		for(int i = 0; i < n; i++)
			add(f+1+2*i,f+1+2*i+1,1);
		for(int i = 1; i <= d; i++)
			add(f+2*n+i,f+2*n+d+1,1);
		int ans = maxflow(0,f+2*n+d+1);
		printf("%d\n",ans);
	}
	return 0;
}

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<stdlib.h>
#include<math.h>
#include<vector>
#include<list>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<algorithm>
#include<numeric>
#include<functional>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int maxn = 505; 

int cf[maxn][maxn],fa[maxn],liu[maxn];  //cf残流 
int vis[maxn];
vector<int> v[maxn];

void init(int x)
{
	memset(cf,0,sizeof cf);
	for(int i = 0; i <= x; i++)
		v[i].clear();
}

int fid(int st,int en)
{
	queue<int> q;
	memset(liu,0,sizeof liu);
	memset(vis,0,sizeof vis);
	memset(fa,-1,sizeof fa);
	liu[st] = 0x3f3f3f3f;
	q.push(st);
	vis[st] = 1;
	while(!q.empty())
	{
		int now = q.front();q.pop();
		if(now == en)
			return liu[en];
		for(int i = 0; i < v[now].size(); i++)
		{
			int temp = v[now][i];
			if(cf[now][temp] > 0 && !vis[temp])
			{
				vis[temp] = 1;
				liu[temp] = min(cf[now][temp], liu[now]);
				fa[temp] = now;
				q.push(temp);
			}
		}
	}
	return liu[en];
}

void up(int st,int en)
{
	int temp = en,s = liu[en];
	while(temp != st)
	{
		cf[ fa[temp] ][temp] -= s;
		cf[temp][ fa[temp] ] += s;
		temp = fa[temp];
	}
}

void add(int a,int b,int c)
{
	cf[a][b] = c;
}

int main(void)
{
	int n,d,f;
	while(scanf("%d%d%d",&n,&f,&d)!=EOF)
	{
		init(2*n+f+d+5);
		for(int i = 0; i < n; i++)
		{
			int a,b,k;
			scanf("%d%d",&a,&b);
			while(a--)
			{
				scanf("%d",&k);
				add(k,f+1+2*i,1);
			}
			while(b--)
			{
				scanf("%d",&k);
				add(f+1+2*i+1,f+2*n+k,1);
			}
		}
		for(int i = 1; i <= f; i++)
			add(0,i,1);
		for(int i = 0; i < n; i++)
			add(f+1+2*i,f+1+2*i+1,1);
		for(int i = 1; i <= d; i++)
			add(f+2*n+i,f+2*n+d+1,1);
		int ans = 0,num;
		while( (num = fid(0,f+2*n+d+1)) )
		{
			ans += num;
			up(0,f+2*n+d+1);
		}
		printf("%d\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值