cf 921 div2 A-D题总结

赛中只过掉了A,B题让卡时间了,真的难受

A题,对答案有贡献的字符串就是abcd....k(第k个字母),想要在长度为n的字符串找到所有的子序列,至少要让前k个字母每个出现n次,即abcd....k(第k个字母)重复n遍,便是最终答案

#include <bits/stdc++.h>
using namespace std;
void solve()
{
    int a,b;
    scanf("%d%d",&a,&b);
    while(a--)
    {
        for(int i=0;i<b;i++)
        {
            char s=(i+'a');
            cout<<s;
        }
    }
    cout<<endl;
}
int main()
{
    int t;
    cin>>t;
    while(t--) solve();
    return 0;
}

B.

假设a1,a2,a3.....an的gcd为g

即可以得到 g(k1+k2+k3+....+kn)=x

因为k1,k2,k3.....kn都是大于1的正整数,所以它们的和就要大于n

即答案为求x的因数里面,满足g*n<=x的最大的那个g

坑点:最开始的时候我是直接枚举的1-x/n之间的数,即时间复杂度为o(x)在本题里面t个测试案例正好TLE了,所以这题应该把n的前\sqrt{x}枚举i,这样n/i得到另一个因数

//正确代码

#include <bits/stdc++.h>
using namespace std;
void solve()
{
    int x,k;
    scanf("%d%d",&x,&k);
    int m=x/k;
    int ans=0;
    for(int i=1;i*i<=x;i++)
    {
        int sz=i,sz1=x/i;
        if(x%i==0) 
        {
            if(sz<=m) ans=max(ans,sz);
            if(sz1<=m) ans=max(ans,sz1);
        }
    }
    cout<<ans<<endl;
        
}
int main()
{
    int t;
    cin>>t;
    while(t--) solve();
    return 0;
}

C题基于A题的思想,贪心找反例就行

#include <bits/stdc++.h>
using namespace std;
void solve()
{
    int n,k,m;
    scanf("%d%d%d",&n,&k,&m);
    string s,ans="";
    cin>>s;
    bool find[k];
    memset(find, false, sizeof(find));//前k个字符是否出现过
    int cnt=0;//出现字符的数量 
    /*贪心做法 例如abbaac 遍历到c时发现对整个字符串的贡献是abc*/
    
    for(auto x:s)
    {
        if(ans.size()==n) break;
        if(find[x-'a']==false) {
            cnt++;
            find[x-'a']=true;
        }
        if(cnt==k) {
            ans+=x;
            cnt=0;
            memset(find,false,sizeof(find));
        }
    }
    if(ans.size()==n) cout<<"YES"<<endl;
    else {
        cout<<"NO"<<endl;
        int x=0;
            for(int i=0;i<k;i++){
                if(find[i]==false) {
                    x=i;
                    break;
                }
            }
        while(ans.size()<n){
            ans+=('a'+x);
        }
        cout<<ans<<endl;
    }
    
}
int main()
{
    int t;
    cin>>t;
    while(t--) solve();
    return 0;
}

D题其实就是概率+二项分布,但是代码比较恶心,贴题解代码供参考

   #include <bits/stdc++.h>                
    #define int long long   
    #define IOS std::ios::sync_with_stdio(false); cin.tie(NULL);cout.tie(NULL);
    #define mod 1000000007ll
    using namespace std;
    const long long N=200005, INF=2000000000000000000;
    
    int power(int a, int b, int p)
    {
        if(b==0)
        return 1;
        if(a==0)
        return 0;
        int res=1;
        a%=p;
        while(b>0)
        {
            if(b&1)
            res=(1ll*res*a)%p;
            b>>=1;
            a=(1ll*a*a)%p;
        }
        return res;
    }
    int fact[N],inv[N];
    void pre()
    {
        fact[0]=1;
        inv[0]=1;
        for(int i=1;i<N;i++)
        fact[i]=(i*fact[i-1])%mod;
        for(int i=1;i<N;i++)
        inv[i]=power(fact[i], mod-2, mod);
    }
    int nCr(int n, int r, int p) 
    { 
        if(r>n || r<0)
        return 0;
        if(n==r)
        return 1;
        if (r==0) 
        return 1; 
        return (((fact[n]*inv[r]) % p )*inv[n-r])%p;
    } 
    int32_t main()
    {
        IOS;
        pre();
        int t;
        cin>>t;
        while(t--)
        {
            int n, m, k;
            cin>>n>>m>>k;
            int sum=0;
            for(int i=0;i<m;i++)
            {
                int a, b, f;
                cin>>a>>b>>f;
                sum=(sum + f)%mod;
            }
            int den=((n*(n-1))/2ll)%mod;
            int den_inv=power(den, mod-2, mod);
            int base=(((sum*k)%mod)*den_inv)%mod;
            int ans=0;
            for(int i=1;i<=k;i++)
            {
                int sum=((i*(i-1))/2ll)%mod; 
                int p = (nCr(k, i, mod)*power(den_inv, i, mod))%mod;
                int z = ((den-1)*den_inv)%mod;
                p=(p * power(z, k-i, mod))%mod;
                ans = (ans + (sum*p)%mod)%mod;
            }
             ans = (base + (m*ans)%mod)%mod;
            cout<<ans<<'\n';
        }
    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值