离散变量熵计算及matlab应用

本文介绍了离散变量的熵、联合熵、条件熵、相对熵和互信息的概念,并探讨了它们在多属性决策权重计算中的应用。特别地,详细阐述了条件熵如何衡量已知X条件下Y的不确定性,以及相对熵作为衡量两个随机变量“距离”的性质。同时,提供了MATLAB代码链接以供参考。
摘要由CSDN通过智能技术生成

根据熵、联合熵、条件熵、相对熵、互信息等可以计算多属性决策的权重,因此,需要了解各种离散熵的计算。

一、信息熵的概念
1948年,香农Claude E. Shannon引入信息(熵),将其定义为离散随机事件的出现概率。一个系统越是有序,信息熵就越低;反之,一个系统越是混乱,信息熵就越高。所以说,信息熵可以被认为是系统有序化程度的一个度量。
在这里插入图片描述
在这里插入图片描述
(三)条件熵
在随机变量X发生的前提下,随机变量Y发生所新带来的熵定义为Y的条件熵,用H(Y|X)表示,用来衡量在已知随机变量X的条件下随机变量Y的不确定性。
且有此式子成立:H(Y|X) = H(X,Y) – H(X),整个式子表示(X,Y)发生所包含的熵减去X单独发生包含的熵。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计量小虫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值