运筹学基础
一、导论
1.1 概论
- 运筹学时一门研究如何有效地组织和管理人机系统的科学。
- 运筹学为管理人员制定决策提供了定量基础。
- ★运筹学定义:运筹学利用计划方法和有关多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据。
- ★决策方法的分类
- 定性决策:基本上根据决策人员的主观经验或感受到的感觉或知识而制定的决策,成为定性决策。
- 定量决策:借助于某些正规的计量方法而做出的决策,成为定量决策。
- 混合性决策:必须运用定性和定量两种方法才能制定的决策,成为混合性决策。
- ★决策的步骤
- 观察待决策问题所处的环境
- 分析和定义待决策的问题
- 拟定模型
- 选择输入材料
- 提出解并验证它的合理性
- 实施最优解
二、预测
2.1 预测的概念和程序
-
★预测的概念:预测就是对外来不确定的事件进行估计或判断。
-
预测的方法
- 根据内容分为:经济预测、科技预测、军事预测、社会预测
- 根据运用的方法分为:定性预测、定量预测
- 根据预测的期限分为:短期预测(或称近期预测)、中期预测、长期预测
★★经济预测:1年以内为短期,1-3年为中期,3-5年为长期预测。
★★科技预测:5-10年为短期,10-30年为中期,30-50年为长期预测。
-
预测的过程
- 确定预测的对象或目标
- 选择预测周期
- 选择预测方法
- 收集有关资料
- 进行预测
2.2 定性预测法:判断预测法
-
定性预测法也叫判断预测法,分为:特尔斐法和专家小组法。
-
特尔斐法定义:特尔斐法是希望在“专家群”中取得比较一致的意见的方法。
特尔斐法的特点:
- 在接受面讯或函询者之间是背对背的,也就是说专家发表意见是匿名的。
- 进行多次信息反馈。
- 最后由调研人员整理并归纳专家们的总结意见,将比较同一的意见和比较特殊的意见一起交给有关部,以供他们决策。
特尔斐法的实施程序:
- 确定课题
- 选择专家
- 设计咨询表
- 逐轮咨询和信息反馈
- 采用统计分析方法,对预测结果进行定量评价和描述
特尔斐法:适用于中期和长期预测。
-
专家小组法:是在接受咨询的专家之间组成一个小组,面对面地进行讨论与磋商,最后对需要预测的课题得出比较一致的意见。
专家小组法的优点:可以做到互相协商、相互补充;
专家小组法的缺点:当小组会议组织的不好时,可能会使权威人士左右会场或多数人的意见淹没了少数人的创新见解。
专家小组法:适用于短期预测。
2.3 时间序列预测法
-
时间序列的组成大致可分为:长期趋势、季节性波动、周期性波动、随机波动。
-
时间序列预测方法
-
滑动平均预测法
滑动平均预测法分为:简单平均预测法、加权平均预测法。
-
简单平均预测法
x ˉ = x 1 + x 2 + . . . + x n n x̄=\frac{x_1+x_2+...+x_n}{n} xˉ=nx1+x2+...+xn -
加权平均预测法
x ˉ w = x 1 w 1 + x 2 w 2 + . . . + x n w n w 1 + w 2 + . . . + w n x̄_w=\frac{x_1w_1+x_2w_2+...+x_nw_n}{w_1+w_2+...+w_n} xˉw=w1+w2+...+wnx1w1+x2w2+...+xnwn
$ x̄:平均值 $$ x:实际数据$
$ w:实际数据所取的权数 $
-
-
指数平滑预测法
F t + 1 = F t + α ( x t − F t ) = α x t + ( 1 − α ) F t F_{t+1}=F_t+α(x_t-F_t)=αx_t+(1-α)F_t Ft+1=Ft+α(xt−Ft)=αxt+(1−α)Ft$ F_{t+1}:t+1期的预测值 $
$ F_t:t期预测值 $
$ α:平滑系数 $
$ x_t:t期实际值 $
α趋近1时,t+1期预测值越接近t期的实际值,α趋近0时,t+1期的预测值越接近t期的预测值
α一般取值范围:0≤α≤1;特殊情况下,α也可取大于1的数值。
-
2.4 回归模型预测法
-
回归分析法是依据事物发展的内部因素变化的因果关系来预测事物未来的发展趋势,它是研究变量间相互关系的一种定量预测方法,称为回归模型预测法,或因果法。多应用于经济预测与科技预测。
-
回归分析法的分类
-
线性回归方程
-
一元线性回归
y = a + b x y=a+bx y=a+bx$ y:因变量 $
$ x:自变量 $
$ a、b:回归模型参数 $
R = ∑ ( y ^ i − y ˉ ) 2 ∑ ( y i − y ˉ ) 2 R=\sqrt{\frac{\sum(\hat{y}_i-\bar{y})^2}{\sum(y_i-\bar{y})^2}} R=∑(yi−yˉ)2∑(y^i−yˉ)2★相关系数R,R取值范围:-1≤R≤1
R取正值,表明y与x是正相关,R取负值,表明y与x是负相关,R=0时,y与x完全不相关。
-
多元线性回归
y = a + b 1 x 1 + b 2 x 2 y=a+b_1x_1+b_2x_2 y=a+b1x1+b2x2
$ y:因变量 $$ x_1、x_2:两个自变量 $
$ a、b_1、b_2:回归模型参数 $
-
-
非线性回归方程
-
-
★最小二乘法:寻求使误差平方总和为最小的配合趋势线的方法。
三、决策
3.1 决策的概念和程序
- 决策的分类
- 按决策方法分为:★常规性决策、特殊性决策
- 按计划和控制的关系分为:计划性决策、控制性决策
- 决策的步骤
- 确定决策目标
- 拟定可行方案
- 预测可能发生的自然状态
- 编制决策收益表
- 应用决策标准进行决策,选出满意的方案
3.2 在不同环境下的决策
- 确定条件下的决策:只存在一种自然状态
- 不确定条件下的决策:存在一个以上的自然状态,而决策者不了解其它状态,甚至不完全了解如何把概率分配给自然状态
- 风险条件下的决策:存在一个以上的自然状态,决策者具有提供将概率值分配到每个可能状态的值
3.3 不确定条件下的决策
-
最大最大决策标准:也称为乐观主义者的决策标准。(大中取大)
-
最大最小决策标准:也称为保守主义者的决策标准、悲观主义决策。(小中取大)
-
最小最大遗憾值决策标准
将每种状态$ θ_j$下的最大收益值减去其它方案的值,找出每个方案的最大遗憾值,然后从中选择一个最小的作为备选方案。
-
现实主义决策标准:也称为折中主义决策标准。($ max(最大a+最小(1-a)))$
c v i = a ∗ m a x [ a i j ] + ( 1 − a ) ∗ m i n [ a i j ] cv_i=a*max[a_{ij}]+(1-a)*min[a_{ij}] cvi=a∗max[aij]+(1−a)∗min[aij]
$ cv_i:第i个方案的这种收益值 $$ a:概率值或称折中系数,0<a<1 $
$ i:方案数,i=1,2,…,n $
$ j:自然状态数,j=1,2,…,m $
$ a_{ij}:为方案A_i在遇到自然状态θ_j的情况下,所能获得的收益值 $
3.4 风险条件下的决策
-
风险情况下的决策一般又叫统计型决策或随机型决策,主要是根据多种不同的自然状态可能发生的概率来决策的。
-
最大期望收益值决策
C P i j = P ∗ Q i , j − C ∗ L i , j + S ∗ L i , j CP_{ij}=P*Q_{i,j}-C*L_{i,j}+S*L_{i,j} CPij=P∗Qi,j−C∗Li,j+S∗Li,j$ CP_{ij}:购进方案i遇到销售状态j时的条件利润(i=1,2,…,n;j=1,2,…,m) $
$ P:单位利润 $
$ Q_{i,j}:购进方案i遇到销售状态j时,所能销售的数量 $
$ C:单位成本 $
$ L_{i,j}:购进方案i遇到的销售状态j时,不能售出的数量 $
$ S:单位折余值 $
E P i = ∑ j = 1 m C P i , j ( B j ) EP_i=\sum_{j=1}^{m}CP_{i,j}(B_j) EPi=j=1∑mCPi,j(Bj)$ EP_i:购进方案i的期望利润 $
$ CP_{ij}:购进方案i遇到销售状态j时的利润条件 $
$ B_j:销售状态j的出现概率 $
-
最小期望损失值标准
m i n ∑ j = 1 m C P i j ′ ∗ ( B j ) min\sum_{j=1}^{m}CP'_{ij}*(B_j) minj=1∑mCPij′∗(Bj)$ B_j:第j列的概率值 $
$ CP’_{ij}:第i方案的损失值 $
3.5 决策树
-
决策树的结构比较简单,树是有方块和圆圈为节点,并由直线连接而成为一种树状结构。方块结点是决策点。由决策点引出的树枝,成为方案枝,每个树枝代表一个方案。圆圈结点是状态结点,由状态结点引出的树枝,称为状态枝,表示不同的状态。
-
决策树方法的优点
-
它构成决策过程,使决策者能够以一种顺序的、有条理的方式接近决策。
-
它要求决策者检验所有的可能得结果,合意的和不合意的一样要检验。
-
它以一种非常简明的方式,把决策过程传给别人,说明对未来的每一种假设。
-
通过集中注意于每一个财政数字、概率和优先的假设——一次一个,以便分组来讨论各种方案。
-
它能够和计算机一起使用,为的是可以模拟许多不同组合的假设,来观察这些供选择的方案中各种改变的最终结果所产生的影响。
-
四、库存管理
4.1 库存管理的作用和意义
- 库存管理的作用
- 适应原材料供应的季节性
- 适应产品销售的季节性
- 适应运输上的合理性和经济性
- 适应生产上的合理安排
- 适应批发量的大小
- 库存管理的意义
- 保证企业按科学的计划实现均衡生产,不要因缺少原材料或其它物资而停工停产。
- 使库存管理的总费用达到最低。
- 库存管理的内容
- 确定经济采购量或经济生产批量。
- 确定一个合适的订购提前量。
- 确定一个合适的安全库存量。
- 计算最小库存费用。
- 提出行之有效的管理与控制方法。
4.2 库存管理的存货台套法与ABC分类管理
-
库存台套法:以存货台套作为存货管理的单位,在某个存货台套中可以包括有关的各种单项存货。
-
ABC分析法:按各种存货台套或存货单元的年度需用价值,将它们分为A、B、C三类。
-
A类存货台套:占全部存货台套数的10%,其价值占全部存货年度所需用价值的70%。
A类存货应该细致地加强管理,其原因:
- 台套数量不多,管理更加容易
- 对A类存货的管理能够获得较大的经济效果
- 因它们具有特殊的作用,需要特殊的保存方法(如防火设备、易爆炸物品、剧毒物品、甚至放射性同位素等)
-
B类存货单元:占全部存货台套数的30%,其价值只占全部存货年度所需用价值的20%。
-
C类存货单元:占全部存货台套数的60%,其价值只占全部存货年度所需用价值的10%。
由于B类、C类存货单元所占的价值量较小,而存货单元数量较多,因此管理上不必过分细致,可以适当粗略一些。
-
4.3 库存费用分析和平均库存的概念
-
企业的仓库一般可以分为原材料库和半成品、成品库两类。
原材料库库存费用:库存费用=订货费+保管费
T C = P + C TC=P+C TC=P+C
半成品和成品库库存费用:库存费用=工装调整费+保管费
T C = S + C TC=S+C TC=S+C -
库存费用
-
订货费用
订货费 = 年需求量 订货量 ∗ 一次订货费 订货费=\frac{年需求量}{订货量}*一次订货费 订货费=订货量年需求量∗一次订货费P = D N ∗ P 0 P=\frac{D}{N}*P_0 P=ND∗P0
-
工装调整费
工装调整费 = 年计划产量 生产批量 ∗ 一次工装调整量 工装调整费=\frac{年计划产量}{生产批量}*一次工装调整量 工装调整费=生产批量年计划产量∗一次工装调整量S = R N ∗ P s S=\frac{R}{N}*P_s S=NR∗Ps
-
保管费用
保管费 = 平均库存量 ∗ 单位物资保管费 保管费=平均库存量*单位物资保管费 保管费=平均库存量∗单位物资保管费C = 1 2 N ∗ C 0 C=\frac{1}{2}N*C_0 C=21N∗C0
1 2 N 为平均库存量 \frac{1}{2}N为平均库存量 21N为平均库存量
-
保管费率
C i = 全年整个企业所支出的保管费用总额 ( C ) 全年整个企业各种存货的平均存货总额 ( M ) C_i=\frac{全年整个企业所支出的保管费用总额(C)}{全年整个企业各种存货的平均存货总额(M)} Ci=全年整个企业各种存货的平均存货总额(M)全年整个企业所支出的保管费用总额(C)保管费 = 平均库存量 ∗ 库存物资单价 ∗ 保管费率 保管费=平均库存量*库存物资单价*保管费率 保管费=平均库存量∗库存物资单价∗保管费率
即: C = 1 2 N ∗ R ∗ C i 即:C=\frac{1}{2}N*R*C_i 即:C=21N∗R∗Ci
-
平均库存额(或平均存货额)
平均库存额 = 每个单元或每个台套的单位价格(库存物资单位) ∗ 平均库存量 平均库存额=每个单元或每个台套的单位价格(库存物资单位)*平均库存量 平均库存额=每个单元或每个台套的单位价格(库存物资单位)∗平均库存量即: M = 1 2 N ∗ R 即:M=\frac{1}{2}N*R 即:M=21N∗R
-
4.4 经济订货量(EOQ)的计算方法
-
经济订货量(EOQ):是使总的存货费用达到最低的为某个台套或某个存货单元确定的最佳的订货批量。
-
订货费用=保管费用(费用是最低)
-
最佳订货量
N μ = 2 A P 0 R 2 C i N_μ=\sqrt\frac{2AP_0}{R^2C_i} Nμ=R2Ci2AP0