Hannah

——好好工作才有好的生活。

年终总结:2017没有旅行,却从不缺少风景

今年没有出远门,如果园博园和衡水湖还算远的话,那就勉强算作一次吧。其实,我和朋友有过约定,当实现了一个小目标,我们就一起去三亚看海,去穿我们的波西米亚长裙。只是每到一个小目标我们都会期盼下一个目标,目标无止境,我们是一类人,只觉今日有限,来日尚且方长。 元旦时,看了支付宝推送的账单,买衣服花了几...

2018-02-05 15:46:34

阅读数 458

评论数 6

B树与B+树简明扼要的区别

  看了很多讲B树和B+树的文章,大多都是围绕各自的特性讲的,第一,树中每个结点最多含有m个孩子(m>=2);第二,……我也是从这些文章里弄懂了各种树的联系与区别,要真写,我可能还不如人家写得好。所以就在这里简明扼要的用几张图记录一下主要区别吧。    为了便于说明,我们先...

2017-09-20 13:21:20

阅读数 22238

评论数 10

说说项目管理的那些事儿

在我们的开发团队里,每一个带过项目的人都成了优秀的员工. 这不是偶然,领导别人才会明白如何被领导,有句话叫”没有当过老板的员工不是好员工.”五年前听说这句话的时候还很不理解,等到自己做了项目负责人才真真切切地体会到这一点.今天想谈谈自己管理项目之后得一些体会.总体分了几大块.人员管理:人最大的问...

2015-07-19 16:12:48

阅读数 3165

评论数 6

年终总结:2018依旧没有旅行,我却行走了一光年

看到每天博客上都有赞,有关注,有鼓励的评论,仿佛一不留神活成了别人需要的样子,便一次次下定决心要好好写,总觉得好忙,好像总是来不及。此时此刻看到新的留言,忍无可忍来占个位,2018年过去几个月了,还欠一篇年终总结没写,感觉能写两万字。对于写博这件事,最开心的,便是你搜到这篇文章的时候能从眉头紧锁变...

2019-04-08 21:38:55

阅读数 117

评论数 2

ionic/angular踩过的坑

MSBUILD : error MSB4132: 无法识别工具版本“2.0”。可用的工具版本为 “14.0”, “4.0” 场景: 在Windows环境中使用npm install安装依赖时,node-gyp在构建时未能找到所需版本的构建工具。可以查看,项目的node_modules下的n...

2019-01-22 19:32:37

阅读数 175

评论数 3

【机器学习】梯度下降--常用的无约束最优化方法

参考文章: L1范数与L2范数的区别 https://blog.csdn.net/pan060757/article/details/73321681 L0与L1与L2范数,宏观 https://blog.csdn.n...

2018-11-08 21:25:58

阅读数 316

评论数 2

【机器学习】生成模型和判别模型

定义: 生成方法由数据学习联合概率分布P(x, y),然后求出条件概率分布P(y|x)作为预测的模型。 包括朴素贝叶斯,贝叶斯网络,高斯混合模型,隐马尔科夫模型等。 判别方法由数据直接学习决策函数y = f(x) 或者条件概率分布P(y|x) 作为预测的模型。 包括K近邻,感知机,决策树,...

2018-09-11 21:36:13

阅读数 182

评论数 1

【机器学习】欠拟合与过拟合的解决方法

下面这张经典的图展示了欠拟合(第一个)与过拟合(第三个)。 欠拟合 模型在训练集上学习的不够好,经验误差大,称为欠拟合。模型训练完成后,用训练数据进行测试,如果错误率高,我们就很容易发现模型还是欠拟合的。 解决办法: 增加训练次数。 添加其他特征项,例如,组合特征、泛化特征、相关性特...

2018-09-10 20:55:05

阅读数 856

评论数 1

【机器学习】逻辑回归过程推导

目录: 一、LR的基本原理。 二、LR的具体过程,包括:选取预测函数,求解Cost函数和J(θ),梯度下降法求J(θ)的最小值。 三、对《机器学习实战》中给出的实现代码进行了分析,对阅读该书LR部分遇到的疑惑进行了解释。比如:一般都是用梯度下降法求损失函数的最小值,为何这里用梯度上升法呢?书...

2018-09-10 17:55:59

阅读数 1091

评论数 0

【机器学习】特征工程

     “数据和特征工程决定了模型的上限,改进算法只不过是逼近这个上限而已。”        可见,数据是本质,而特征工程具有洪荒之力,它的目的就是竭尽所能地从数据中提取特征,在配合算法的情况下获得最好的模型,所以,说白了,特征工程就是处理样本数据,样本数据有的也就是那些样本的特征了,所以无论是...

2018-05-14 18:09:35

阅读数 224

评论数 0

【数学】从鸡兔同笼谈数学思维

    “今有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”     “鸡兔同笼问题”是我国古算书《孙子算经》中著名的数学问题,意思是:有若干只鸡和兔在同个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?       如果看到这道题的你,首先想到的是二元一次...

2018-05-08 14:13:49

阅读数 645

评论数 0

【机器学习】朴素贝叶斯-贝叶斯公式

       曾以为数理是这世上最绝对、最客观、最远离哲学的,慢慢地我发现其实他们是最不绝对、最不客观、最含有哲学意味儿的。这个看法改变的过程,其实是对世界深度认知的过程,在感性与理性中探索有限与无限。感触有点深,主要是最近对概率统计以及微积分的学习与研究,让我知道那些公式背后都有一些难以跨过的坎...

2018-04-16 15:20:16

阅读数 386

评论数 0

【机器学习】Kaggle项目中遇到的问题与解决方案

    原来写的都是.py的Python代码,到了kaggle中发现所有项目的code部分都是下图这样的,有点迷糊,后来发现notebook真是个好东西。   问题1.下载了源码,源码文件扩展名是.ipynb,该如何看? 解决方案: 因之前安装了Anaconda,所以在开始菜单搜索A...

2018-02-05 15:07:23

阅读数 848

评论数 0

【机器学习】监督学习:分类和回归

  有没有想过为什么监督学习中“分类”占了一大半?   监督学习是指有目标变量或预测目标的机器学习方法,包括分类和回归。对于分类来说,目标变量是样本所属的类别,在样本数据中,包含每一个样本的特征,如花朵颜色、花瓣大小,也包含这个样本属于什么类别,它是向日葵还是菊花,而这个类别就是目标变量。分类就...

2018-02-01 14:46:38

阅读数 3708

评论数 0

【机器学习】朴素贝叶斯-对文档进行分类

上一篇文章【机器学习】朴素贝叶斯-条件概率     已经提过了利用朴素贝叶斯进行文档分类的步骤,下面我们来看每个步骤的目的,搞清楚我们要处理的数据满足什么条件,是什么格式,我们所写的每一个函数的入参是什么,处理完成后的出参,即处理结果是什么样的,又是如何将计算的条件概率应用于贝叶斯公式,得到文档...

2018-01-16 17:35:28

阅读数 849

评论数 2

【机器学习】朴素贝叶斯-条件概率

朴素贝叶斯是基于概率论的分类方法,主要步骤是:       1.利用Python的文本处理能力,将文档切分成词向量       2.从词向量计算概率,得到分类器       3.优化分类器       4.通过分类器进行分类     其中,计算概率是很关键的步骤,包括计算条件概...

2018-01-15 17:35:30

阅读数 880

评论数 0

算法这一站是新的起点

  之前零星了解一点算法的东西,但提到算法我和大多数人一样,认为那是rocket science(高深的技术)。至于“程序=数据结构+算法”,想必也是只有深入研究以后才有的感受吧。        年初,决定深入地研究一下算法知识,于是系统地看了几本书,坚持上了几个月的课,从排序、基本数据结构、一...

2017-09-18 18:49:04

阅读数 697

评论数 1

减治、分治与变治

减治:   利用了一个问题给定实例的解和同样问题较小实例的解之间的某种关系,常用的有n和n-1的关系,有了这种关系我们可以自顶向下地递归求解,也可以自底向上地迭代实现,从较小实例开始求解这一角度来看减治也叫增量法。 减治法的三种方式: 1.减常量   每次迭代总...

2017-07-28 18:45:52

阅读数 1534

评论数 5

斐波那契数列

1, 1, 2, 3, 5, 8, 13, 21, 34,……   如果一对兔子每月能生一对兔子(一雌一雄),而每对小兔在它出生后的第三个月,又能开始生一对小兔。如果没有兔子死亡,由一对小兔开始,50个月后会有多少对兔子?   或许你会说哪能每次都是一雌一雄,小兔子还能长命百岁?好吧,都说了如...

2017-07-21 11:41:30

阅读数 596

评论数 0

汉诺塔的递归解法

汉诺塔问题:      有n个不同大小的盘子和三根木桩。一开始,所有的盘子都按照大小顺序套在第一根木桩上,最大的盘子在底部,最小的在顶部。我们要把所有的盘子都移动到第三根木桩上去,必要时可借助第二根木桩。每次只能移动一个盘子,不能把较大的盘子放在较小盘子的上面。        传说当64个...

2017-07-18 16:12:01

阅读数 722

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭