基于深度学习的自然语言处理——NLP特征的案例分析

本文深入探讨了自然语言处理(NLP)的各个任务,包括语言识别、主题分类、作者归属等,并详细阐述了词性标注、命名实体识别、介词词义消歧和语法依存分析等任务的核心特征。例如,语言识别关注二阶字母对,主题分类依赖词袋模型,作者归属分析利用词性标记和功能词。词性标注借助单词本身的特征及上下文信息,而命名实体识别则结合共现单词和分布式特征。介词词义消歧利用词的形态和上下文语义。这些深入的特征分析揭示了深度学习在NLP中的关键作用。
摘要由CSDN通过智能技术生成

NLP特征的案例分析

文本分类:语言识别

  • 任务:给定一个文档或句子,希望将其归类为一组特定的语言
  • 核心特征:每个可能的二阶字母对

文本分类:主题分类

  • 任务:对于给定的文档,将其归类为一组预定义的主题。
  • 单位:词
  • 特征:文档词袋

文本分类:作者归属

  • 任务:对于给定文本,推断作者身份或文本作者的一些特征。
  • 特征:
    • 应侧重于文本属性,专注于词性标记和功能词。
    • 功能词与代词词袋、词性词袋、词性的二元文法、三元文法、四元文法词袋、功能词的密度、删除内容词后的功能词二元文法词袋、连贯功能词之间的距离分布。

上下文中的单词:词性标注

  • 任务:给定一个句子,对其中每个单词分配正确词性
  • 通用树库项目中的词性集合
  • 信息来源
    • 内部线索(单词本身):词的识别、前缀、后缀、正字词的形状、单词在大语料库中的频率
    • 外部线索(上下文):上下文单词的标识、前缀、后缀以及前面单词的词性预测结果
  • 核心特征样例
    • 单词、2字母后缀、3字母后缀、2字母前缀、3字母前缀、单词是否大写、是否包含连字符、是否包含数字、
    • 位于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值