Interesting Housing Problem----KM

题目:http://acm.hdu.edu.cn/showproblem.php?pid=2426

注:

1)   二分图中边权为负值时,不匹配 (he still wants to design a creative plan such that no student is assigned to a room he/she dislikes)

2)   KM算法中如果无法进行匹配成功,就会进入死循环 (所以我选择用最大二分匹配 先进行匹配)

3)   还有就是如果是邻接矩阵储存的话,要考虑到矩阵的初始化


源代码:

/*==============================================================================*\
二分图最佳匹配(kuhn munkras算法)
最大权匹配/最小权匹配,复杂度O(n^3)
\*==============================================================================*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define N 505              //N是X的顶点数最大值 M是Y的顶点数最大值 
#define M 5005
#define INF 1e9
#define fin -10001        //g[][]的初值,绝对值大于边权的最大值

using namespace  std;

int u,v,w,e;

int g[N][M],nx,ny; //需要初始化    nx是X的顶点数  ny是Y的顶点数

int mx[N],my[M],lx[N],ly[M]; //lx[],ly[]为KM算法中Xi与Yi的顶点标号  mx[]是匹配后X中对应的Y的顶点编号  my[]是匹配后Y中对应的X的顶点编号

bool sx[N],sy[N]; //标记是否在交错树上

int prev[N],slack[N]; //prev[i]为Y中i点在交错树上的前点;slack为松弛量

int q[2*N],head,tail;

bool chk[N];   //标记数组

bool search(int u)
{
    for(int v=0;v<ny;v++)
     if(g[u][v]>-1&&!chk[v])
    {
        chk[v]=true;
        if(my[v]==-1||search(my[v]))
        {
            my[v]=u;  mx[u]=v;
            return true;
        }
    }
    return false;
}

int Maxmatch()
{
    int ret=0;
    memset(mx,-1,sizeof(mx));
    memset(my,-1,sizeof(my));
    for(int u=0;u<nx;u++)
    if(mx[u]==-1)
    {
        memset(chk,false,sizeof(chk));
        if(search(u))  ret++;
    }
    return ret;
}

void augment(int v){ //增广

    while(v!=-1){
        int pv=mx[prev[v]];
        mx[prev[v]]=v; my[v]=prev[v];v=pv;
    }
}

bool bfs(){

    while(head!=tail){
        int p=q[head++],u=p>>1;
        if(p & 1){
            if(my[u]==-1){ augment(u);return true;
            }
            else {  q[tail++]=my[u]<<1; sx[my[u]]=true;
            }
        }
        else
            for(int i=0;i<ny;i++)
                if(sy[i]) continue;
                else if(lx[u]+ly[i]!=g[u][i]){
                        int ex=lx[u]+ly[i]-g[u][i];
                        if(slack[i]>ex){ slack[i]=ex; prev[i]=u; }
                        }
                    else { prev[i]=u; sy[i]=true; q[tail++]=i*2+1; }
    }
    return false;
}

int KMmatch(bool maxsum ){ //默认为最大权匹配
    int i,j,ex,cost=0;
    if(!maxsum) for(i=0;i<nx;i++)
        for(j=0;j<ny;j++) g[i][j]*=-1;
    memset(mx,-1,sizeof(mx));
    memset(my,-1,sizeof(my));
    memset(ly,0,sizeof(ly));
    for(i=0;i<nx;i++)
        for(lx[i]=-INF,j=0;j<ny;j++)
            lx[i]=max(lx[i],g[i][j]);
    for(int live=0;live<nx;live++){
        memset(sx,0,sizeof(sx));
        memset(sy,0,sizeof(sy));
        for(i=0;i<ny;i++)slack[i]=INF;
            head=tail=0; q[tail++]=live*2; sx[live]=true;
            while(!bfs()){
                for(ex=INF,i=0;i<ny;i++)    if(!sy[i]) ex=min(ex,slack[i]);
                for(i=0;i<nx;i++)    if(sx[i])lx[i]-=ex;
                for(j=0;j<ny;j++){ if(sy[j])ly[j]+=ex;slack[j]-=ex;}
                for(i=0;i<ny;i++)
                if(!sy[i] && slack[i]==0){q[tail++]=i*2+1;sy[i]=true;}
            }
    }
    if(!maxsum) for(i=0;i<nx;i++) for(j=0;j<ny;j++) g[i][j]*=-1;
    for(i=0;i<nx;i++)cost+=g[i][mx[i]];
    return cost;
}

int main()
{
     int k=0;
   //freopen("D:\\a.txt","r",stdin);
    while(~scanf("%d %d %d",&nx,&ny,&e))
    {
        k++;
        memset(g,fin,sizeof(g));
        for(int i=0;i<e;i++)
        {
            scanf("%d %d %d",&u,&v,&w);
            if(w>=0) g[u][v]=w;
        }
        if(Maxmatch()!=nx)
            printf("Case %d: -1\n",k);
        else
       printf("Case %d: %d\n",k,KMmatch(true));
    }
}

几组测试数据:

2 2 4
0 0 1
0 1 4
1 0 -1
1 1 1 

2 1 2
0 0 2
1 0 3

3 3 3
0 0 8
1 0 9
2 2 10

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值