Galerkin方法

伽辽金方法(Galerkin method)是由俄罗斯数学家鲍里斯·格里戈里耶维奇·伽辽金(俄文:Борис Григорьевич Галёркин)发明的一种数值分析方法。应用这种方法可以将求解微分方程问题(通过方程所对应泛函的变分原理)简化成为线性方程组的求解问题。而一个高维(多变量)的线性方程组又可以通过线性代数方法简化,从而达到求解微分方程的目的。 

伽辽金法采用微分方程对应的弱形式,其原理为通过选取有限多项试函数(又称基函数或形函数),将它们叠加,再要求结果在求解域内及边界上的加权积分(权函数为试函数本身)满足原方程,便可以得到一组易于求解的线性代数方程,且自然边界条件能够自动满足。 

必须强调指出的是,作为加权余量法的一种试函数选取形式,伽辽金法所得到的只是在原求解域内的一个近似解(仅仅是加权平均满足原方程,并非在每个点上都满足)。 

因为伽辽金方法的妙处在于研究它们的抽象方法。 
  • 7
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要了解一下什么是Galerkin方法和CEA引理。 Galerkin方法是一种求解偏微分方程的数值方法,它通过将原方程进行变分,将问题转化为求解一组线性方程组的形式,从而得到近似解。Galerkin方法的基本思想是,将解函数表示为一组基函数的线性组合,然后通过适当的选取基函数,使得误差最小化。 CEA引理是指对于一个弱解$u$,满足一定条件的有限元解$u_h$与$u$之间的误差可以通过对称正定的有限元刚度矩阵$A$和有限元右端向量$f$进行控制,即 $$\|u-u_h\|_{H^1(\Omega)}\leq C\inf_{v_h\in V_h}\|u-v_h\|_{H^1(\Omega)}$$ 其中,$C$是一个常数,$V_h$是一个有限维函数空间。 现在,我们可以来证明CEA引理。 假设$u$是一个弱解,$u_h$是一个有限元解,满足$u_h\in V_h$。我们可以定义误差函数$e=u-u_h$,则有 $$\int_\Omega\nabla u_h\nabla e\mathrm{d}x=\int_\Omega\nabla u\nabla e\mathrm{d}x-\int_\Omega f\nabla e\mathrm{d}x$$ 利用Galerkin方法,我们可以将$u_h$和$e$表示为一组基函数的线性组合,即 $$u_h=\sum_{i=1}^n u_i\varphi_i(x),\quad e=\sum_{i=1}^n e_i\varphi_i(x)$$ 其中,$\varphi_i(x)$是基函数,$u_i$和$e_i$是系数。将$u_h$和$e$代入上式中,得到 $$\sum_{i=1}^n u_i\int_\Omega\nabla\varphi_i\nabla e\mathrm{d}x=\sum_{i=1}^n u_i\int_\Omega\nabla\varphi_i\nabla u\mathrm{d}x-\sum_{i=1}^n u_i\int_\Omega\varphi_if\mathrm{d}x$$ 注意到$u_h\in V_h$,因此可以将上式中的$u_i$看作是任意常数,而$\varphi_i(x)$是已知的基函数。因此,上式可以看作是一个线性方程组,其中的未知数是$e_i$。设解为$e_i^\ast$,则有 $$\sum_{i=1}^n u_i\int_\Omega\nabla\varphi_i\nabla e_i^\ast\mathrm{d}x=\sum_{i=1}^n u_i\int_\Omega\nabla\varphi_i\nabla u\mathrm{d}x-\sum_{i=1}^n u_i\int_\Omega\varphi_if\mathrm{d}x$$ 由于$e^\ast$是近似解,因此有 $$\|e\|_{H^1(\Omega)}\leq\|e^\ast\|_{H^1(\Omega)}$$ 另一方面,根据Galerkin方法的定义,我们有 $$\inf_{v_h\in V_h}\|u-v_h\|_{H^1(\Omega)}\leq\|u-u_h\|_{H^1(\Omega)}$$ 结合上述两式,得到 $$\inf_{v_h\in V_h}\|u-v_h\|_{H^1(\Omega)}\leq\|u-u_h\|_{H^1(\Omega)}\leq C\|e^\ast\|_{H^1(\Omega)}$$ 其中,$C=\sup_{v_h\in V_h}\frac{\|A(v_h)\|_{H^1(\Omega)}}{\|v_h\|_{H^1(\Omega)}}$,而$A(v_h)$是有限元刚度矩阵。 因此,我们证明了CEA引理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值