高斯消元模板

const double eps=1e-6;
const int N=100+10;
double a[N][N];
int gauss(int n,int m)
{
	int col,row,mxr;
	for(row=col=1;row<=n&&col<=m;row++,col++)
	{
		mxr=row;
		for(int i=row+1;i<=n;i++)
			if(fabs(a[i][col])>fabs(a[row][col]))
				mxr=i;
		if(mxr!=row) swap(a[row],a[mxr]);
		if(fabs(a[row][col])<eps)
		{
			row--;
			continue;
		}
		for(int i=1;i<=n;i++) //消成上三角矩阵
			if(i!=row&&fabs(a[i][col])>eps)
				for(int j=m;j>=col;j--)
					a[i][j]-=a[row][j]/a[row][col]*a[i][col];
	}
	row--;
	for(int i=row;i>=1;i--) //回代成对角矩阵
	{
		for(int j=i+1;j<=row;j++)
			a[i][m]-=a[j][m]*a[i][j];
		a[i][m]/=a[i][i];
	}
	return row;
}

数值计算方法课的实验,用来进行简单的高斯消元

高斯消元+完全主元素+若尔当方法

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=100;
double a[N][N];
double ans[N];
int n;
void swap_r(int q,int p)
{
	for(int i=1;i<=n+1;i++)
	{
		double t=a[p][i];
		a[p][i]=a[q][i];
		a[q][i]=t;
	}
}
void swap_c(int q,int p)
{
	for(int i=1;i<=n+1;i++)
	{
		double t=a[i][p];
		a[i][p]=a[i][q];
		a[i][q]=t;
	}
}
void prt()
{
	for(int i=1;i<=n+1;i++)
	{
		for(int j=1;j<=n+1;j++)
			printf("%2.5f ",a[i][j]);
		printf("\n");
	}
	printf("\n");
}
void gs()
{
	for(int i=1;i<n;i++)
	{
		double m=fabs(a[i][i]);
		int p=i,q=i;
		for(int j=i+1;j<=n;j++)
			for(int k=i;k<=n;k++)
			if(fabs(a[j][k])>m)
			{
				m=fabs(a[j][k]);
				p=j;
				q=k;
			}
			//cout<<p<<endl;
		if(p!=i)
			swap_r(p,i);
		if(q!=i)
			swap_c(q,i);
		//prt();
		for(int j=i+1;j<=n;j++)
		{
			if(a[j][i]==0.0) continue;
			double t=a[j][i]/a[i][i];
			a[j][i]=0.0;
			for(int k=i+1;k<=n+1;k++)
				a[j][k]-=t*a[i][k];
		}
		//prt();
	}
	prt();
}
void red()
{
	for(int i=n;i>1;i--)
	{
		for(int j=i-1;j>=1;j--)
		{
			if(a[j][i]==0) continue;
			double t=a[j][i]/a[i][i];
			a[j][i]=0.0;
			for(int k=i+1;k<=n+1;k++)
				a[j][k]-=t*a[i][k];
		}
	}
	prt();
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n+1;j++)
			scanf("%lf",&a[i][j]);
	for(int i=1;i<=n;i++)
		a[n+1][i]=i;
	gs();
	red();
	for(int i=1;i<=n;i++)
		ans[(int)a[n+1][i]]=a[i][n+1]/a[i][i];
	for(int i=1;i<=n;i++)
		printf("x%d=%f\n",i,ans[i]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值