const double eps=1e-6;
const int N=100+10;
double a[N][N];
int gauss(int n,int m)
{
int col,row,mxr;
for(row=col=1;row<=n&&col<=m;row++,col++)
{
mxr=row;
for(int i=row+1;i<=n;i++)
if(fabs(a[i][col])>fabs(a[row][col]))
mxr=i;
if(mxr!=row) swap(a[row],a[mxr]);
if(fabs(a[row][col])<eps)
{
row--;
continue;
}
for(int i=1;i<=n;i++) //消成上三角矩阵
if(i!=row&&fabs(a[i][col])>eps)
for(int j=m;j>=col;j--)
a[i][j]-=a[row][j]/a[row][col]*a[i][col];
}
row--;
for(int i=row;i>=1;i--) //回代成对角矩阵
{
for(int j=i+1;j<=row;j++)
a[i][m]-=a[j][m]*a[i][j];
a[i][m]/=a[i][i];
}
return row;
}
数值计算方法课的实验,用来进行简单的高斯消元
高斯消元+完全主元素+若尔当方法
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=100;
double a[N][N];
double ans[N];
int n;
void swap_r(int q,int p)
{
for(int i=1;i<=n+1;i++)
{
double t=a[p][i];
a[p][i]=a[q][i];
a[q][i]=t;
}
}
void swap_c(int q,int p)
{
for(int i=1;i<=n+1;i++)
{
double t=a[i][p];
a[i][p]=a[i][q];
a[i][q]=t;
}
}
void prt()
{
for(int i=1;i<=n+1;i++)
{
for(int j=1;j<=n+1;j++)
printf("%2.5f ",a[i][j]);
printf("\n");
}
printf("\n");
}
void gs()
{
for(int i=1;i<n;i++)
{
double m=fabs(a[i][i]);
int p=i,q=i;
for(int j=i+1;j<=n;j++)
for(int k=i;k<=n;k++)
if(fabs(a[j][k])>m)
{
m=fabs(a[j][k]);
p=j;
q=k;
}
//cout<<p<<endl;
if(p!=i)
swap_r(p,i);
if(q!=i)
swap_c(q,i);
//prt();
for(int j=i+1;j<=n;j++)
{
if(a[j][i]==0.0) continue;
double t=a[j][i]/a[i][i];
a[j][i]=0.0;
for(int k=i+1;k<=n+1;k++)
a[j][k]-=t*a[i][k];
}
//prt();
}
prt();
}
void red()
{
for(int i=n;i>1;i--)
{
for(int j=i-1;j>=1;j--)
{
if(a[j][i]==0) continue;
double t=a[j][i]/a[i][i];
a[j][i]=0.0;
for(int k=i+1;k<=n+1;k++)
a[j][k]-=t*a[i][k];
}
}
prt();
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n+1;j++)
scanf("%lf",&a[i][j]);
for(int i=1;i<=n;i++)
a[n+1][i]=i;
gs();
red();
for(int i=1;i<=n;i++)
ans[(int)a[n+1][i]]=a[i][n+1]/a[i][i];
for(int i=1;i<=n;i++)
printf("x%d=%f\n",i,ans[i]);
return 0;
}