最小路径覆盖问题, 最小路径覆盖 = |V| - 最大匹配数
但是有一个问题,如果路径可以相交,需要经过处理:如何处理
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
const int N=1000+10;
const int M=3e5+10;
const int INF=0x7f7f7f7f;
struct Edge
{
int to,nxt;
}edge[M];
int tot,first[N];
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].nxt=first[u];
first[u]=tot++;
}
void init()
{
tot=0;
memset(first,-1,sizeof(first));
}
int uN,dis;
int Mx[N],My[N];
int dx[N],dy[N];
bool used[N];
bool SearchP()
{
queue<int> q;
memset(dx,-1,sizeof(dx));
memset(dy,-1,sizeof(dy));
for(int i=1;i<=uN;i++)
if(Mx[i]==-1)
{
q.push(i);
dx[i]=0;
}
dis=INF;
while(!q.empty())
{
int u=q.front();
q.pop();
if(dx[u]>dis) break;
for(int i=first[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(dy[v]==-1)
{
dy[v]=dx[u]+1;
if(My[v]==-1) dis=dy[v];
else
{
dx[My[v]]=dy[v]+1;
q.push(My[v]);
}
}
}
}
return dis!=INF;
}
bool dfs(int u)
{
for(int i=first[u];i!=-1;i=edge[i].nxt)
{
int v=edge[i].to;
if(!used[v]&&dy[v]==dx[u]+1)
{
used[v]=true;
if(My[v]!=-1&&dy[v]==dis) continue;
if(My[v]==-1||dfs(My[v]))
{
My[v]=u;
Mx[u]=v;
return true;
}
}
}
return false;
}
int MaxMatch()
{
int res=0;
memset(Mx,-1,sizeof(Mx));
memset(My,-1,sizeof(My));
while(SearchP())
{
memset(used,false,sizeof(used));
for(int i=1;i<=uN;i++)
if(Mx[i]==-1&&dfs(i)) res++;
}
return res;
}
bool g[510][510];
int main()
{
int n,m,a,b;
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0) break;
uN=n;
init();
memset(g,false,sizeof(g));
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
g[a][b]=true;
}
for(int i=1;i<=n;i++) //按理说floyd第一个循环应该是k,我这里写错了,但这道题能过,可能是没有环的原因
for(int j=1;j<=n;j++)
{
if(i==j) continue;
for(int k=1;k<=n;k++)
if(g[i][k]&&g[k][j])
g[i][j]=true;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(g[i][j]) addedge(i,j+n);
printf("%d\n",n-MaxMatch());
}
return 0;
}