自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

顾道长生的科研笔记

计算机科学与技术博士在读,兴趣领域:Diffusion Model,Low-level vision

  • 博客(2)
  • 资源 (4)
  • 问答 (1)
  • 收藏
  • 关注

原创 (CVPR-2025)无需归一化的Transformer

归一化层在现代神经网络中无处不在,并长期被认为是必不可少的。本研究表明,不使用归一化的Transformer可以通过一种极其简单的技术达到甚至超过标准性能。我们提出了Dynamic Tanh(DyT),这是一种逐元素的操作DyT⁡xtanh⁡αxDyTxtanhαx,可以直接替代Transformer中的归一化层。DyT的灵感来自于一个观察:Transformer中的层归一化通常会产生类似tanh的、SSS形的输入输出映射。

2025-04-01 10:56:42 1046

原创 (Arxiv-2025)Magic 1-For-1:在一分钟内生成一分钟视频剪辑

在本技术报告中,我们提出了 Magic 1-For-1(Magic141),这是一种在内存消耗和推理延迟方面经过优化的高效视频生成模型。其核心思想很简单:将文本到视频的生成任务分解为两个更容易的子任务,即文本到图像生成和图像到视频生成,从而实现扩散步蒸馏。我们验证了,在相同的优化算法下,相较于文本到视频任务,图像到视频任务确实更容易收敛。我们还探索了一系列优化技巧,从三个方面降低训练图像到视频(I2V)模型的计算成本:1)通过多模态先验条件注入来加速模型收敛;2)通过应用对抗性步蒸馏来加速推理延迟;

2025-04-01 10:56:00 752

设计模式代码(包含uml类图、和实验报告)

资源名字是软件体系结构课需要的实验代码,内容是设计模式,所以不要怀疑资源有误,内容详尽,包含文档,代码,与uml类图

2020-04-21

国际象棋c++小游戏,qt开发

自己开发的象棋小游戏,windows下运行的,具有人机,人人,联网等功能,C++代码编写,效率高,且能应用于安卓平台,不难移植

2020-04-06

Linux实验报告一.docx

Linux实验报告,shell命令练习与结果,内容详细,适合学习参考

2019-09-25

pytorch.html

个人pytorch学习过程,jupyter notebook 代码过程,结果详细

2019-08-22

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除