/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
// 动态规划
// 4 个孙子偷的钱 + 爷爷的钱 VS 两个儿子偷的钱 哪个组合钱多,
// 就当做当前节点能偷的最大钱数。这就是动态规划里面的最优子结构
// 暴力法
class Solution {
public int rob(TreeNode root) {
if (root == null) return 0;
int money = root.val;
// 两个儿子偷的钱
if (root.left != null) {
money += rob(root.left.left) + rob(root.left.right);
}
if (root.right != null) {
money += rob(root.right.left) + rob(root.right.right);
}
return Math.max(money, rob(root.left) + rob(root.right));
}
}
// 优化
// 使用哈希表来存储结果,TreeNode 当做 key,能偷的钱当做 value
class Solution {
public int rob(TreeNode root) {
HashMap<TreeNode, Integer> memo = new HashMap<>();
return helper(root, memo);
}
private int helper(TreeNode root, HashMap<TreeNode, Integer> memo) {
if (root == null) return 0;
// 如果哈希表有当前key,则直接返回
if (memo.containsKey(root)) return memo.get(root);
int money = root.val;
if (root.left != null) {
money += helper(root.left.left, memo) + helper(root.left.right, memo);
}
if (root.right != null) {
money += helper(root.right.left, memo) + helper(root.right.right, memo);
}
int result = Math.max(money, helper(root.left, memo) + helper(root.right, memo));
memo.put(root, result);
return result;
}
}
/**
* 我们换一种办法来定义此问题
* 每个节点可选择偷或者不偷两种状态,根据题目意思,相连节点不能一起偷
* 当前节点选择偷时,那么两个孩子节点就不能选择偷了
* 当前节点选择不偷时,两个孩子节点只需要拿最多的钱出来就行(两个孩子节点偷不偷没关系)
* 我们使用一个大小为 2 的数组来表示 int[] res = new int[2] 0 代表不偷,1 代表偷
* 任何一个节点能偷到的最大钱的状态可以定义为
* 1.当前节点选择不偷:当前节点能偷到的最大钱数 = 左孩子能偷到的钱 + 右孩子能偷到的钱
* 2.当前节点选择偷:当前节点能偷到的最大钱数 = 左孩子选择自己不偷时能得到的钱 + 右孩子选择不偷时能得到的钱 + 当前节点的钱数
* 表示为公式如下
* root[0] = Math.max(rob(root.left)[0], rob(root.left)[1]) + Math.max(rob(root.right)[0], rob(root.right)[1])
* root[1] = rob(root.left)[0] + rob(root.right)[0] + root.val;
*/
class Solution {
public int rob(TreeNode root) {
int[] result = helper(root);
return Math.max(result[0], result[1]);
}
private int[] helper(TreeNode root) {
int[] result = new int[2];
if (root == null) return result;
int[] left = helper(root.left);
int[] right = helper(root.right);
result[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
result[1] = left[0] + right[0] + root.val;
return result;
}
}
leetcode337. 打家劫舍 III
最新推荐文章于 2024-09-20 23:05:22 发布