智能汽车中人工智能算法应用及其安全综述 -- 行为预测

本文概述了智能汽车中行为预测的重要性,它依赖于机器学习尤其是深度学习技术,如LSTM和CNN,来预测周围物体的未来运动轨迹。文献提及了多种解决方案,包括基于LSTM的行为建模、多层LSTM的序列分类、CNN特征提取及RNN与CNN的结合应用,以提高智能车的安全行驶决策能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

行为预测

行为预测功能会根据当前以及历史感知来预测智能车周围其他运动物体 (如其他车辆、行人、非
机动车等) 的未来运动轨迹。为使智能车在道路上安全有效地行驶,智能汽车不仅应感知其周围其他
运动元素的状态,还应主动预测其未来的运动轨迹,有助于智能车提前做出最优决策。机器学习尤
其是深度学习的最新进展为解决智能车行为预测提供了有力工具。一般地,行为预测算法可以划分为如下 3 类解决方案:基于循环神经网络的解决方案、基于卷积神经网络 (convolutional neural networks, CNN) 的解决方案以及其他方案。文献 【 1 】使用一组 LSTMS 来建模个体车辆的轨迹;另一组用来建模对交互的作用。文献【 2 3 4 】提出了多层长短期记忆网络 (long short-term memory, LSTM) 用于序列分 类 器 。 文 献【 5 】提 出 用 于 估 计 加 速 度 的 两 层LSTM 网络。文献 【 6 】 提出多个 RNN 网络,一组LSTM 网络用于建模个体车辆的轨迹,另一组网络用于建立当前智能车与其他元素的交互模型。在卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值