行为预测
行为预测功能会根据当前以及历史感知来预测智能车周围其他运动物体 (如其他车辆、行人、非
机动车等) 的未来运动轨迹。为使智能车在道路上安全有效地行驶,智能汽车不仅应感知其周围其他
运动元素的状态,还应主动预测其未来的运动轨迹,有助于智能车提前做出最优决策。机器学习尤
其是深度学习的最新进展为解决智能车行为预测提供了有力工具。一般地,行为预测算法可以划分为如下 3 类解决方案:基于循环神经网络的解决方案、基于卷积神经网络 (convolutional neural networks, CNN) 的解决方案以及其他方案。文献 【 1 】使用一组 LSTMS 来建模个体车辆的轨迹;另一组用来建模对交互的作用。文献【 2 3 4 】提出了多层长短期记忆网络 (long short-term memory, LSTM) 用于序列分 类 器 。 文 献【 5 】提 出 用 于 估 计 加 速 度 的 两 层LSTM 网络。文献 【 6 】 提出多个 RNN 网络,一组LSTM 网络用于建模个体车辆的轨迹,另一组网络用于建立当前智能车与其他元素的交互模型。在卷积