pandas中利用get_dummies()进行独热编码(One-Hot encoding)

本文探讨了在机器学习中使用独热编码(One-Hot encoding)的优点,如处理非连续特征、扩展特征空间。在Python中,推荐使用pandas的get_dummies()函数进行编码,并介绍了编码后如何处理冗余特征。此外,文章提到了归一化在某些模型中的重要性,并提供了相关资源链接。
摘要由CSDN通过智能技术生成

       在机器学习分类任务中,经常存在一个特征有多个分类变量值,例如在kaggle中的Titanic比赛数据中,Embarked的值有S,C,Q。我们这个时候要对离散型数据进行onehot编码处理,至于onehot编码的优点以及为什么要用onehot编码?可以参考这篇博文:数据预处理:独热编码(One-Hot Encoding)

一、onehot的优点

       onehot编码的优点可以总结如下:

1、能够处理非连续型数值特征。

2、在一定程度上也扩充了特征。比如性别本身是一个特征,经过one hot编码以后,就变成了男或女两个特征。

3、使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值