在机器学习分类任务中,经常存在一个特征有多个分类变量值,例如在kaggle中的Titanic比赛数据中,Embarked的值有S,C,Q。我们这个时候要对离散型数据进行onehot编码处理,至于onehot编码的优点以及为什么要用onehot编码?可以参考这篇博文:数据预处理:独热编码(One-Hot Encoding)
一、onehot的优点
onehot编码的优点可以总结如下:
1、能够处理非连续型数值特征。
2、在一定程度上也扩充了特征。比如性别本身是一个特征,经过one hot编码以后,就变成了男或女两个特征。
3、使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。