适用于 TensorFlow 2.3 及 keras 2.4.3 ,Python版本为3.8
如果你使用新版本的第三方库,请考虑降级为本文适用的版本,或者自行查阅第三方库的升级文档修改代码。
图像分类数据集中最常用的是手写数字识别数据集MNIST 。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST
FashionMNIST 是图像数据集,它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。FashionMNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。60000/10000 的训练测试数据划分,28x28 的灰度图片。方便我们进行测试各种神经网络算法。 该数据集识别难度远大于原有的MNIST数据集。

数据库导入
所有代码都用keras.datasets接口来加载fashion_mnist数据,从网络上直接下载fashion_mnist数据,无需从本地导入,十分方便。
这意味着你可以将代码中的
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()
修改为(X_train, y_train), (X_test, y_test) = mnist.load_data()
就可以直接对原始的MN

最低0.47元/天 解锁文章
419

被折叠的 条评论
为什么被折叠?



