Fashion_MNIST数据集是一个替代MNIST手写数据集的图片数据集。它是由Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自10种类别的共7万个不同商品的正面图片。 Fashion_MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。60000/10000 的训练测试数据划分,28x28 的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。
下面通过卷积神经网络来实现Fashion_MNIST数据集的分类
import tensorflow as tf
from tensorflow import keras
# Helper libraries
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import numpy as np
import matplotlib.pyplot as plt
下载数据集并加载
EAGER = True
fashion_mnist = keras.datasets.fashion_mnist
class_names = ['T-shirt/top','Trouser','Pullover','Dress','Coat','Sandal','Shirt','Sneaker','Bag','Ankle boot&