ConcurrentHashMap 简介
HashMap是最常用的Key-Value键值对形式存储数据的集合,但是HashMap有线程安全的问题,在多线程并发访问同一个HashMap时可能会导致死循环的情况,一般的线程安全的HashMap集合是Hashtable和Collections.synchronizedMap,但是这两种方式都是在HashMap的put和get方法上加上互斥锁实现的,当一个线程对Map进行读写操作时其他线程必须阻塞等待,效率相对较低,但是ConcurrentHashMap在不发生hash冲突的情况下,多线程访问是不会互斥等待的,效率会高很多
ConcurrentHashMap 的数据结构
ConcurrentHashMap的数据结构在JDK1.7和JDK1.8中有不同的实现,这里以JDK1.8为主要研究对象,相关资料也比较多,本文纯属个人见解,有不足之处欢迎留言
ConcurrentHashMap的数据结构与HashMap类似,都是通过数组+链表/红黑树实现的,但是ConcurrentHashMap通过CAS+Synchronized来保证并发安全
- table:用于存储链表或红黑树头结点的数组,默认为null,在第一次插入数据时初始化长度为16,每次扩容后长度为原来的2倍
- nextTable:扩容后的新数组,长度为原来的2倍,默认为null
- Node:链表的节点,用于保存插入数据的key、value和key的hash值
- TreeNode:链表转换为红黑树后的数节点,用于保存插入数据的key、value和key的hash值
Node结构:
val和next用volatile标识,用于并发访问的可见性
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node<K,V> next;
}
TreeNode结构
红黑树的实现比较复杂,这里不做深入探究,有兴趣的同学可以查阅相关资料
static final class TreeNode<K,V> extends Node<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
}
部分源码解析
put方法
由于代码量太大了,自己对代码的理解有限,只能描述关键节点
public V put(K key, V value) {
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
// key 和value不能为null
if (key == null || value == null) throw new NullPointerException();
// 计算key的hash值
int hash = spread(key.hashCode());
int binCount = 0;
// 死循环尝试设置值
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// 如果底层的数组没有初始化则先进行初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
// 如果根据hash值找到数组下标的位置为空则尝试cas机制写入该位置
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果CAS写入成功则跳出循环
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// 如果根据hash只找到数组下标对应的节点hash值发生变化,则表示数组正在扩容或已经扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
// 发生hash冲突,对数组对应下标的Node节点,即链表或红黑树的头节点进行加锁
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
// 记录链表长度
binCount = 1;
// 遍历链表插入数据
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 如果是红黑树节点,则按照红黑树的模式插入
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
// 判断是否需要将链表转换为红黑树
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
addCount(1L, binCount);
return null;
}
- hash算法spread方法
static final int spread(int h) {
return (h ^ (h >>> 16)) & HASH_BITS;
}
- 初始化内部数组的方法initTable
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// sizeCtl小于0表示正在进行初始化或者调整大小
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// CAS尝试修改sc的值为-1,sizeCtl-1表示正在进行初始化
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
// 如果tab还是空或者长度为0则进行数组的初始化
if ((tab = table) == null || tab.length == 0) {
// 确定数组长度
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
// 构造数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
// 计算下一次扩容时数组的长度,扩容时机为当前长度的0.75时触发扩容
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
get方法
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算key的hash值
int h = spread(key.hashCode());
// 根据hash值找到对应数组中下标
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 如果数组的第一个节点对应的hash值与要查询的key相同
if ((eh = e.hash) == h) {
// 判断key是否相等,如果相等则返回当前节点对应的val值
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 遍历红黑树查找对应的值
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 遍历链表查找对应的值
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}