Java并发集合之ConcurrentHashMap使用与原理

ConcurrentHashMap 简介

HashMap是最常用的Key-Value键值对形式存储数据的集合,但是HashMap有线程安全的问题,在多线程并发访问同一个HashMap时可能会导致死循环的情况,一般的线程安全的HashMap集合是Hashtable和Collections.synchronizedMap,但是这两种方式都是在HashMap的put和get方法上加上互斥锁实现的,当一个线程对Map进行读写操作时其他线程必须阻塞等待,效率相对较低,但是ConcurrentHashMap在不发生hash冲突的情况下,多线程访问是不会互斥等待的,效率会高很多

ConcurrentHashMap 的数据结构

ConcurrentHashMap的数据结构在JDK1.7和JDK1.8中有不同的实现,这里以JDK1.8为主要研究对象,相关资料也比较多,本文纯属个人见解,有不足之处欢迎留言
ConcurrentHashMap的数据结构与HashMap类似,都是通过数组+链表/红黑树实现的,但是ConcurrentHashMap通过CAS+Synchronized来保证并发安全
在这里插入图片描述

  • table:用于存储链表或红黑树头结点的数组,默认为null,在第一次插入数据时初始化长度为16,每次扩容后长度为原来的2倍
  • nextTable:扩容后的新数组,长度为原来的2倍,默认为null
  • Node:链表的节点,用于保存插入数据的key、value和key的hash值
  • TreeNode:链表转换为红黑树后的数节点,用于保存插入数据的key、value和key的hash值

Node结构:

val和next用volatile标识,用于并发访问的可见性

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        volatile V val;
        volatile Node<K,V> next;
}

TreeNode结构

红黑树的实现比较复杂,这里不做深入探究,有兴趣的同学可以查阅相关资料

static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
}

部分源码解析

put方法

由于代码量太大了,自己对代码的理解有限,只能描述关键节点

public V put(K key, V value) {
        return putVal(key, value, false);
    }
final V putVal(K key, V value, boolean onlyIfAbsent) {
		// key 和value不能为null
        if (key == null || value == null) throw new NullPointerException();
        // 计算key的hash值
        int hash = spread(key.hashCode());
        int binCount = 0;
        // 死循环尝试设置值
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            // 如果底层的数组没有初始化则先进行初始化
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            // 如果根据hash值找到数组下标的位置为空则尝试cas机制写入该位置
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            	// 如果CAS写入成功则跳出循环
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            // 如果根据hash只找到数组下标对应的节点hash值发生变化,则表示数组正在扩容或已经扩容
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
            	// 发生hash冲突,对数组对应下标的Node节点,即链表或红黑树的头节点进行加锁
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                        	// 记录链表长度
                            binCount = 1;
                            // 遍历链表插入数据
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 如果是红黑树节点,则按照红黑树的模式插入
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                // 判断是否需要将链表转换为红黑树
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }
  • hash算法spread方法
static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS;
    }
  • 初始化内部数组的方法initTable
private final Node<K,V>[] initTable() {
        Node<K,V>[] tab; int sc;
        while ((tab = table) == null || tab.length == 0) {
        	// sizeCtl小于0表示正在进行初始化或者调整大小
            if ((sc = sizeCtl) < 0)
                Thread.yield(); // lost initialization race; just spin
            // CAS尝试修改sc的值为-1,sizeCtl-1表示正在进行初始化
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                	// 如果tab还是空或者长度为0则进行数组的初始化
                    if ((tab = table) == null || tab.length == 0) {
                    	// 确定数组长度
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        @SuppressWarnings("unchecked")
                        // 构造数组
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        // 计算下一次扩容时数组的长度,扩容时机为当前长度的0.75时触发扩容
                        sc = n - (n >>> 2);
                    }
                } finally {
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }

get方法

public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // 计算key的hash值
        int h = spread(key.hashCode());
        // 根据hash值找到对应数组中下标
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
            // 如果数组的第一个节点对应的hash值与要查询的key相同
            if ((eh = e.hash) == h) {
            	// 判断key是否相等,如果相等则返回当前节点对应的val值
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            // 遍历红黑树查找对应的值
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            // 遍历链表查找对应的值
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值