MongoDB 是一款基于 文档模型 的开源分布式 NoSQL 数据库,由 C++ 编写,旨在为大规模数据提供高性能、高可用性和可扩展性的存储解决方案。与传统关系型数据库(如 MySQL)不同,MongoDB 使用 BSON(Binary JSON) 格式存储数据,文档结构灵活,无需预定义 schema,非常适合存储非结构化或半结构化数据(如日志、用户行为数据、物联网数据等)。
MongoDB | 关系型数据库(如 MySQL) |
---|---|
文档(Document) | 表中的一行记录(Row) |
集合(Collection) | 表(Table) |
数据库(Database) | 数据库(Database) |
字段(Field) | 表中的列(Column) |
核心特点
- 灵活的数据模型:以文档(类似 JSON 对象)为存储单元,支持嵌套结构和动态字段,适应数据结构频繁变化的场景。
- 分布式架构:支持分片(Sharding)和副本集(Replica Sets),可水平扩展存储容量和读写性能,满足高并发和大数据量需求。
- 丰富的查询功能:支持复杂查询(如条件查询、正则匹配、地理空间查询)和索引(包括单字段索引、复合索引、地理空间索引等)。
- 高可用性:通过副本集实现数据冗余和自动故障转移,确保服务不中断。
- 支持事务:从 4.0 版本开始支持多文档事务,满足部分业务的强一致性需求。
适用场景
- 互联网应用:用户信息、订单、评论等半结构化数据存储。
- 实时数据处理:如日志采集、实时分析,MongoDB 支持高写入吞吐量。
- 地理空间应用:内置对地理坐标(如经纬度)的支持,可用于位置搜索(如附近的商家)。
- 微服务架构:灵活的数据模型适合微服务中快速迭代的需求。
不适用场景
- 强事务需求:MongoDB 对事务的支持有限(仅支持单文档事务,4.0+ 版本支持跨文档 / 跨集合事务,但性能不如传统关系型数据库)。
- 高度结构化、复杂关联查询:例如需要多表 JOIN 的场景,MongoDB 更适合通过冗余数据(如嵌套文档)来避免复杂关联。
与其他 NoSQL 数据库的对比
- 与 Redis 对比:Redis 是内存型数据库,主要用于缓存和高速键值对存储;MongoDB 是磁盘型数据库,适合持久化存储和复杂查询。
- 与 Cassandra 对比:Cassandra 是分布式列存储数据库,擅长高写入吞吐量;MongoDB 以文档为中心,查询更灵活。
总结
MongoDB 的核心优势在于 灵活性(动态 Schema)、可扩展性(分片集群)和 开发友好性(JSON 文档模型),尤其适合快速迭代的互联网应用和大数据场景。如果需要处理结构多变的数据,或对扩展性要求较高,MongoDB 是一个理想的选择。