使用Pandas对数据集进行操作

本文介绍如何使用Python中的Pandas和Sklearn库对CSV文件中的数据进行读取、去重、打乱顺序及筛选等操作,并展示了如何获取数据标签及其数量分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 数据信息如下表所示

样例数据如下文件名:data.csv
在这里插入图片描述

2 从数据文件中data.csv读取数据

from pandas import read_csv
def read_data():
    # read data
    data_df = read_csv("data.csv", sep=',', header=0)
    # return
    return data_df

3 对数据文件中data.csv数据去重

def delete_duplicate(data_df):
    # removing missing values and duplicates from dataset
    data_df.drop_duplicates(inplace=True)
    data_df.dropna(inplace=True)
    return data_df

4 对数据进行打乱顺序的两种方法

from sklearn.utils import shuffle
# method1
data_df = shuffle(data_df)
# method2(顺序打乱后数据index还能够按照正常的排序)
data_df = data_df.sample(frac=1).reset_index(drop=True)  

5 获得数据的标签列表以及对应的数量可视化图

def data_info(data_df):
	# get the label
    label_list = list(set(data_df["label"].values.tolist()))
    print(label_list)
    # get the counts
    label_counts = data_df.groupby('label').size()
    print(label_counts)
    data_df['label'].value_counts().plot(kind='bar', rot=45)
    plt.tight_layout()
    # sava picture
    plt.savefig("data.png")
    # show picture
    plt.show()

输出数据基本信息如下所示
在这里插入图片描述
输出数据可视化图如下图所示
在这里插入图片描述

6 根据条件筛选数据集

比如label的值是joke和music的数据集
def filter_data(data_df):
    temp_df = data_df.loc[data_df["label"].isin(["music", "joke"])]
    print(temp_df.shape)
    print(temp_df.head(10))

输出结果如下图所示:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奇文王语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值