用keras调用load_model时报错ValueError: Unknown Layer:LayerName

本文详细介绍了在使用Keras加载包含自定义层的模型时遇到的问题及解决方案,包括如何正确使用custom_objects参数,以及使用CustomObjectScope来处理一个或多个自定义层的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

出现该错误是因为要保存的model中包含了自定义的层(Custom Layer),导致加载模型的时候无法解析该Layer
解决该问题的方法是在load_model函数中添加custom_objects参数,该参数接受一个字典,键值为自定义的层:

ner_model = load_model(model_path + 'ner_crf_bilstm_model.h5', custom_objects={"CRF": CRF,"crf_loss": crf_loss, "crf_accuracy": crf_accuracy})

或者你可以使用对象的方法

from keras.utils import CustomObjectScope
with CustomObjectScope({'AttentionLayer': AttentionLayer}):
    model = load_model('my_model.h5')

Custom objects handling works the same way for load_model, model_from_json, model_from_yaml:

from keras.models import model_from_json
model = model_from_json(json_string, custom_objects={'AttentionLayer': AttentionLayer})

如果有两个以上的自定义网络层的解决方法如下:

custom_ob = {'AttLayer1': custom_layer.Attention,'AttLayer2': custom_layer.Attention}
model = load_model('lstm.h5', custom_objects=custom_ob)
或者
with CustomObjectScope(custom_ob):
model = load_model('lstm.h5')
### 加载 TensorFlow Keras 模型遇到未知优化器错误的解决方案 当使用 `load_model` 函数加载保存为 SavedModel 格式的模型并自定义了优化器(如 Custom Adam),可能会遇到 `ValueError: Unknown optimizer` 错误。为了成功加载此类模型,可以采取以下措施: #### 设置 `compile=False` 为了避免因未识别的组件而引发异常,在调用 `load_model` 方法应指定参数 `compile=False`[^3]。 ```python from tensorflow.keras.models import load_model model = load_model('/path/to/saved/model', compile=False) ``` #### 手动编译模型 一旦通过上述方式绕过了自动编译过程,则需显式地重新配置模型以应用所需的优化算法和其他选项。这一步骤涉及提供完整的优化器实例以及任何必要的度量标准或损失函数。 ```python import tensorflow as tf optimizer_instance = tf.keras.optimizers.Adam( learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, ) model.compile( optimizer=optimizer_instance, loss='binary_crossentropy', metrics=['accuracy'] ) ``` #### 使用 `custom_objects` 参数传递自定义类 如果使用的优化器不是内置类型而是用户自定义实现版本,则还需要借助于 `custom_objects` 参数来告知框架如何解析这些实体。对于名为 “CustomAdam”的定制化优化器而言,具体做法如下所示[^4]: ```python class CustomAdam(tf.keras.optimizers.Optimizer): # 定义自己的优化器逻辑... custom_objects_dict = { 'CustomAdam': CustomAdam } model = load_model( '/path/to/saved/model', custom_objects=custom_objects_dict, compile=True # 如果已注册所有依赖项则可尝试开启此标志位 ) ``` 以上策略能够有效处理由不兼容或者缺失的优化器引起的加载失败情况,并确保所恢复的对象具备预期的行为特性。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奇文王语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值