【自适应(盲)均衡5】分数间隔均衡器基本原理及应用(更正数字通信翻译版中公式错误)

本文深入探讨了分数间隔均衡器(FSE)的基本原理和优势,指出FSE在解决频谱混迭问题上优于符号间隔均衡器,尤其在水声通信中的应用。通过实例和性能分析,展示了FSE如何改善接收信号的质量,并介绍了FSE在水声通信中的最新应用和发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

重要声明:为防止爬虫和盗版贩卖,文章中的核心代码和数据集可凭【CSDN订阅截图或公号付费截图】私信免费领取,一律不认其他渠道付费截图!

摘要:本文在大量阅读国内外关于分数间隔均衡器(Fractionally-Spaced Equalizer, FSE)的文献基础上,理解并掌握了分数间隔均衡器的基本原理,以及相对于符号间隔均衡器的优点。通过阅读文献对分数间隔均衡器收敛特性等性能进行了分析,结果证明FSE性能优于符号间隔均衡器几个分贝,甚至当后者调整到最佳抽样时也如此。最后介绍了分数间隔均衡器在水声通信中的应用,并阐述了分数间隔均衡发展现状及最新应用。

关键字:分数间隔; 均衡器; FSE; 发展现状; 应用

1 引言

根据输人信号的采样速率可以划分均衡器,如果均衡器的相邻抽头时间延迟等于T(T为码元间隔),则称为符号间隔均衡器。若均衡器的输出信号带宽不严格限制在1/T,那么以1/T的速率采样会引起混迭现象,即频谱间隔为1/T的频谱分量相互重叠。信号的频谱混迭模型可能会出现频谱零点[1]。以超过码元速率的速率采样就能解决这个问题,采用这种技术的均衡器称为分数间隔均衡器(FSE)。FSE的抽头时间间隔满足

T ′ T ( 1 + r ) {T}'\frac{T}{(1+r)} T(1+r)T (1)

其中,r表示超量带宽。换言之,接收信号带宽应满足

W ′ T ( 1 + r ) {W}'\frac{T}{(1+r)} W(1+r)T (2)

目标是选择 T ′ T' T使均衡器的传输函数 H e ( f ) {H_e}(f) He(f)的带宽可容纳整个信号频谱。对均衡器输出信号的采样速率仍是1/T,但因为抽头的时间间隔为 T ′ T' T(均衡器输入信号的采样速率是 1 / T ′ 1/T' 1/T),所以均衡作用于频率分量发生混迭前的接收信号。在音频电话线上的仿真实验证明,若取 T ′ = T / 2 T' = T/2 T=T/2,分数间隔均衡器的性能优于码元间隔均衡器。

2 基本原理

不同类型的数字调制技术的发送信号具有共同的形式:

v ( t ) = ∑ n = 0 ∞ I n g ( t − n T ) v(t) = \sum\limits_{n = 0}^\infty {{I_n}} g(t - nT) v(t)=n=0Ing(tnT) (3)

式中, { I n } \{ {I_n}\} {In}表示离散信息符号序列,而 g ( t ) g(t) g(t)是一个脉冲且假定在本讨论中具有带限的频率响应特性 G ( f ) G(f) G(f),即当 ∣ f ∣ > W |f| > W f>W G ( f ) = 0 G(f) = 0 G(f)=0。这个信号通过信道传输,信道的频率响应 C ( f ) C(f) C(f)也限于 ∣ f ∣ ⩽ W |f| \leqslant W fW范围。因此,接收信号可以表示为

r l ( t ) = ∑ n = 0 ∞ I n h ( t − n T ) + z ( t ) {r_l}(t) = \sum\limits_{n = 0}^\infty {{I_n}} h(t - nT) + z(t) rl(t)=n=0Inh(tnT)+z(t) (4)

式中

h ( t ) = ∫ − ∞ ∞ g ( τ ) c ( t − τ ) d τ h(t) = \int_{ - \infty }^\infty g (\tau )c(t - \tau )d\tau h(t)=g(τ)c(tτ)dτ (5)

z ( t ) z(t) z(t)表示加性高斯白噪声。
假设接收机信号首先通过一个滤波器,然后以速率1/T符号/秒抽样。由信号检测观点得出的最佳滤波器是与接收脉冲匹配的滤波器,也就是说,接收滤波器的频率响应是 H ∗ ( f ) {H^*}(f) H(f)。把接收滤波器的输出表示为[2]

y ( t ) = ∑ n = 0 ∞ I n x ( t − n T ) + v ( t ) y(t) = \sum\limits_{n = 0}^\infty {{I_n}} x(t - nT) + v(t) y(t)=n=0Inx(tnT)+v(t) (6)

式中, x ( t ) x(t) x(t)表示接收滤波器对输入脉冲 h ( t ) h(t) h(t)的响应,而 v ( t ) v(t) v(t)是接收滤波器对噪声 z ( t ) z(t) z(t)的响应。
那么,若在 t = k T + τ 0 t = kT + {\tau _0} t=kT+τ0时刻, k = 0 , 1 , ⋯ k = 0,1, \cdots k=0,1,,对 y ( t ) y(t) y(t)抽样,则有

y ( k T + τ 0 ) ≡ y k = ∑ n = 0 ∞ I n x ( k T − n T + τ 0 ) + v ( k T + τ 0 ) y\left( {kT + {\tau _0}} \right) \equiv {y_k} = \sum\limits_{n = 0}^\infty {{I_n}} x\left( {kT - nT + {\tau _0}} \right) + v\left( {kT + {\tau _0}} \right) y(kT+τ0)yk=n=0Inx(kTnT+τ0)+v(kT+τ0) (7)

或等价为

y k = ∑ n = 0 ∞ I n x k − n + v k , k = 0 , 1 , ⋯ {y_k} = \sum\limits_{n = 0}^\infty {{I_n}} {x_{k - n}} + {v_k},\quad k = 0,1, \cdots yk=n=0Inxkn+vk,k=0,1, (8)

式中, τ 0 {\tau _0} τ0是信道的传输延时。抽样值可以表示为

y k = x 0 ( I k + 1 x 0 ∑ n = 0 n ≠ k ∞ I n x k − n ) + v k , k = 0 , 1 , ⋯ y_{k}=x_{0}\left(I_{k}+\frac{1}{x_{0}} \sum_{n=0 \atop n \neq k}^{\infty} I_{n} x_{k-n}\right)+v_{k}, \quad k=0,1, \cdots yk=x0(Ik+x01n=kn=0Inxkn)+vk,k=0,1, (9)

x 0 {x_0} x0看作一个任意的标尺因子,为方便令它等于1,则

y k = I k + ∑ n = 0 , n ≠ k ∞ I n x k − n + v k {y_k} = {I_k} + \sum\limits_{n = 0,n \ne k}^\infty {{I_n}} {x_{k - n}} + {v_k} yk=Ik+n=0,n=kInxkn+vk (10)

I k {I_k} Ik项表示在第 k k k个抽样时刻的期望信息符号,而

∑ n = 0 , n + k ∞ I n x k − n \sum\limits_{n = 0,n + k}^\infty {{I_n}} {x_{k - n}} n=0,n+kInxkn

表示符号间干扰(ISI), v k {v_k} vk是在第 k k k个抽样时刻的加性高斯噪声变量。由(8)可得

y k = I k ⊗ x k + v k {y_k} = {I_k} \otimes {x_k} + {v_k} yk=Ikxk+vk (11)

其中 I k = δ k = δ ( k T ) ↔ 1 {I_k} = {\delta _k} = \delta (kT) \leftrightarrow 1 Ik=δk=δ(kT)1 x ( t + τ 0 ) ↔ X ( f ) e j 2 π f τ 0 x(t + {\tau _0}) \leftrightarrow X(f){e^{j2\pi f{\tau _0}}} x(t+τ0)X(f)ej2πfτ0 x k = x ( k T + τ 0 ) {x_k} = x(kT + {\tau _0}) xk=x(kT+τ0) x ( t + τ 0 ) x(t + {\tau _0}) x(t+τ0)的时域采样,其傅里叶变换为 X ( f ) e j 2 π f τ 0 X(f){e^{j2\pi f{\tau _0}}} X(f)ej2πfτ0的周期延拓,即

x ( k T + τ 0 ) ↔ 1 T ∑ X ( f − n T ) e j 2 π ( f − n T ) τ 0 x(kT + {\tau _0}) \leftrightarrow \frac{1}{T}\sum {X(f - \frac{n}{T})} {e^{j2\pi (f - \frac{n}{T}){\tau _0}}} x(kT+τ0)T1X(fTn)ej2π(fTn)τ0 (12)

所以

Y T ( f ) = 1 T ∑ X ( f − n T ) e j 2 π ( f − n T ) τ 0 {Y_T}(f) = \frac{1}{T}\sum {X(f - \frac{n}{T})} {e^{j2\pi (f - \frac{n}{T}){\tau _0}}} YT(f)=T1X(fTn)ej2π(fTn)τ0 (13)

式中, Y T ( f ) {Y_T}(f) YT(f)为折叠或混叠谱,其中折叠频率是 1 2 T \frac{1}{{2T}} 2T1。接收信号谱与抽样延时 τ 0 {\tau _0} τ0的选择有关。在均衡器输出端的谱为 C T ( f ) Y T ( f ) {C_T}(f){Y_T}(f) CT(f)YT(f),其中

C T ( f ) = ∑ k = − K K c k e − j 2 π f k T {C_T}(f) = \sum\limits_{k = - K}^K {{c_k}} {{\text{e}}^{ - {\text{j}}2\pi fkT}} CT(f)=k=KKckej2πfkT (14)

由上式可以看出,符号速率均衡器只能补偿混叠接收信号的频率响应,不能补偿信道的固有失真 X ( f ) e j 2 π f τ 0 X(f){e^{j2\pi f{\tau _0}}} X(f)ej2πfτ0。也就是说,若 τ 0 < T {\tau _0} < T τ0<T,则 e − j 2 π f k T {e^{ - j2\pi fkT}} ej2πfkT不可能抵消 e j 2 π f τ 0 {e^{j2\pi f{\tau _0}}} ej2πfτ0

与符号速率均衡器相反,FSE是基于对输入的信号以至少两倍的奈奎斯特速率进行抽样。例如,发送信号由升余弦谱的脉冲组成,其滚降因子为 β \beta β,则其谱延伸到 F max ⁡ = ( 1 + β ) / ( 2 T ) {F_{\max }} = (1 + \beta )/(2T) Fmax=(1+β)/(2T)。在接收机中,可以速率.

2 F max ⁡ = 1 + β T 2{F_{\max }} = \frac{{1 + \beta }}{T} 2Fmax=T1+β (15)

对该信号抽样,信号通过一个抽头间隔为 T / ( 1 + β ) T/(1 + \beta ) T/(1+β)的均衡器。例如,如果 β = 1 \beta = 1 β=1,则均衡器的间隔为 T / 2 T/2 T/2。一般地,一个数字实现的分数间隔均衡器的抽头间隔为 M T / N MT/N MT/N,其中M和N为整数且 N > M N > M N>M。通常采用 T / 2 T/2 T/2间隔的均衡器。
因为FSE的频率响应为

C T ′ ( f ) = ∑ k = − K K c k e − j 2 π f k T ′ {C_{T'}}(f) = \sum\limits_{k = - K}^K {{c_k}} {{\text{e}}^{ - {\text{j}}2\pi fkT'}} CT(f)=k=KKckej2πfkT (16)

式中, T = M T / N T = MT/N T=MT/N,所以 C T ′ ( f ) {C_{T'}}(f) CT(f)能够对奈奎斯特频率 f = 1 2 T f = \frac{1}{{2T}} f=2T1之外至 f = ( 1 + β ) / ( 2 T ) = N / ( 2 M T ) f = (1 + \beta )/(2T) = N/(2MT) f=(1+β)/(2T)=N/(2MT)的接收信号谱进行均衡。均衡后的谱为

C T ′ ( f ) Y T ′ ( f ) = C T ′ ( f ) ∑ n X ( f − n T ′ ) e j 2 π ( f − n / T ′ ) τ 0 = C T ′ ( f ) ∑ n X ( f − n N M T ) e j 2 π ( f − n N / M T ) τ 0 \begin{aligned} C_{T^{\prime}}(f) Y_{T^{\prime}}(f) &=C_{T^{\prime}}(f) \sum_{n} X\left(f-\frac{n}{T^{\prime}}\right) e^{j 2 \pi\left(f-n / T^{\prime}\right) \tau_{0}} \\ &=C_{T^{\prime}}(f) \sum_{n} X\left(f-\frac{n N}{M T}\right) e^{j 2 \pi(f-n N / M T) \tau_{0}} \end{aligned} CT(f)YT(f)=CT(f)nX(fTn)ej2π(fn/T)τ0=CT(f)nX(fMTnN)ej2π(fnN/MT)τ0 (17)

因为当 ∣ f ∣ > N / ( 2 M T ) |f| > N/(2MT) f>N/(2MT) X ( f ) = 0 X(f) = 0 X(f)=0,所以式(17)可以表示为

C T ′ ( f ) Y T ′ ( f ) = C T ′ ( f ) X ( f ) e j 2 π f τ 0 , ∣ f ∣ ⩽ 1 2 T ′ C_{T^{\prime}}(f) Y_{T^{\prime}}(f)=C_{T^{\prime}}(f) X(f) \mathrm{e}^{\mathrm{j} 2 \pi f \tau_{0}}, \quad|f| \leqslant \frac{1}{2 T^{\prime}} CT(f)YT(f)=CT(f)X(f)ej2πfτ0,f2T1(18)

因此,在因符号速率抽样造成混叠效应之前,FSE补偿了接收信号中的信道失真。换言之, C T ′ ( f ) {C_{T'}}(f) CT(f)能够补偿任意的定时相位。

FSE输出以符号速率抽样且频谱为

∑ k C T ′ ( f − k T ) X ( f − k T ) e j 2 π ( f − k / T ) τ 0 \sum\limits_k {{C_{T'}}} \left( {f - \frac{k}{T}} \right)X\left( {f - \frac{k}{T}} \right){{\text{e}}^{{\text{j}}2\pi (f - k/T){\tau _0}}} kCT(fTk)X(fTk)ej2π(fk/T)τ0 (19)

实际上,最佳FSE等价于最佳线性接收机,它由匹配滤波器之后跟随一个符号速率均衡器所组成。T/P分数间隔均衡器的多采样率系统模型如图1所示。
在这里插入图片描述
图1 T/P分数间隔均衡器的多采样率系统模型

3 性能分析

分数间隔均衡器性能的分析,包括其收敛特性,在昂格伯克(Ungerboeck,1976)的论文中给出。图2说明了用于一个具有高端幅度失真的信道(其特性也示于该图)的符号速率均衡器和T/2-TFSE的性能。符号间隔均衡器之前有一个滤波器匹配于发送脉冲,具有(平方根)升余弦谱且20%滚降( β  =  0.2 \beta {\text{ = }}0.2 β = 0.2),FSE之前没有滤波器。符号速率为2400符号/秒且调制为QAM。接收SNR是30 dB,两种均衡器均有31个抽头;因此,T/2-FSE横跨的时间间隔是符号速率均衡器的一半。虽然如此,当后者在最佳抽样时刻被最佳化时,FSE性能优于符号速率均衡器,而且FSE对定时相位不敏感,如图3所示。
在这里插入图片描述
图2 高端幅度失真信道(HA)
在这里插入图片描述
图3 均衡器性能

对于一个具有较差的包络延时特性的信道,符号速率均衡器和T/2-FSE的SNR性能如图4所示。在这种情况下,2两种均衡器有相同的时间跨度。T间隔均衡器有24个抽头,而FSE有48个抽头。符号速率为2400符号/秒且数据速率为9600 b/s,采用QAM调制。信号脉冲具有升余弦谱且 β  =  0.12 \beta {\text{ = }}0.12 β = 0.12,FSE性能优于T间隔均衡器几个分贝,甚至当后者调整到最佳抽样时也如此。
在这里插入图片描述
图3 T和T/2均衡器性能

4 分数间隔均衡器在水声通信中的应用

在水声数字通信系统中,由于声波传播的多径效应造成的码间干扰是获得髙速数据传输的主要障碍,有效的解决方法是在接收机中使用均衡器。采用传统的自适应均衡技术抑制多径效应的影响,需要周期地发送训练序列,降低了水声信道的带宽利用率[3]。而盲均衡技术不需要训练序列,可有效地提高信息的传输速率。

在盲均衡技术中,虽然常模(CMA)算法结构简单、性能稳定,但是传统的基于符号间隔的常模盲均衡算法(BSE-CMA)收敛速度较慢、稳态均方误差较高,而基于分数间隔的常数模盲均衡算法(FSE-CMA),在接收端以大于发送码元为字符间隔的速率对接收信号进行过采样,加快了收敛速度,降低了稳态均方误差。

针对深衰落稀疏多径信道下多进制相移键控(MPSK)信号的盲均衡问题,提出了一种l0-范数约束的分数间隔稀疏自适应双模式盲均衡算法[4]。该算法借鉴传统的分数间隔双模式盲均衡算法思想,结合稀疏自适应滤波理论,首先利用l0-范数对均衡器抽头系数进行稀疏性约束,构造出一种l0-范数约束的分数间隔双模式最小均方误差代价函数,然后依据梯度下降法推导出盲均衡器抽头系数更新公式,并对迭代步长进行归一化和比例系数化。

理论分析和仿真实验表明,与基于门限稀疏化的盲均衡算法、基于分数阶范数的盲均衡算法及分数间隔双模式盲均衡算法相比,该文献所提算法在保证较快收敛速度的前提下,能有效降低剩余符号间干扰。

图4是各算法的均衡器输出星座图。从BSE-CMA的均衡器输出星座图可以看出,该星座图中星座点发散且相连,BSE-CMA无法均衡该信道。相比之下,FSE-CMA(T/2,T/4,T/8)可以有效地均衡带有谱零点的信道,它们的星座图上的收敛点清晰且紧凑,同时可以看出T/8-FSE-CMA 的均衡器输出星座图最为紧密集中。
在这里插入图片描述
图4 均衡器输出星座图

5 发展现状及最新应用

水声通信成为近些年的研究焦点。由于海洋环境噪声大、信道多途结构复杂、传播损失大等恶劣信道条件下,为了获取更高的接收信噪比,通常采用大尺寸接收阵进行接收信号。但这在水下潜器中并不适用,所以研究性能良好的小尺寸接收机十分必要。

有学者根据水声信道特性建立了时变水声信道物理模型、矢量信道物理模型和时变矢量信道物理模型,并通过对矢量信道的多途结构和矢量场中声压信道与振速信道的相关特性分析可知,在矢量信号场中声压信道与水平振速信道是相干的,但声压信道与垂直振速信道是非相干的。在矢量噪声场中,声压噪声与振速噪声均是非相干的;这为矢量自适应信道均衡研究奠定了物理基础[5]。

针对时变水声信道存在严重的信道多径干扰和信道多径衰落问题,自适应多通道判决反馈均衡器利用自适应算法可以根据信道变化而改变均衡器权系数和垂直信道非相干的物理特性,有效地提高了均衡系统的输出增益,但是这样的接收机尺寸较大。矢量水听器能同步共点地输出矢量场中的声压与振速信息,同时利用在矢量信道场中声压信道与水平振速信道是相干的,声压信道与垂直信道是非相干的,但在矢量噪声场中声压与振速是非相干的物理特性,研究了基于单矢量水听器的自适应信道均衡系统。通过对单矢量均衡系统与标量均衡系统均衡性能的比较分析可知,矢量均衡系统比标量均衡系统具有更好的均衡效果;对单矢量均衡系统中不同组合方式的均衡性能进行比较分析可知,利用声压与水平振速的线性组合信号与垂直振速信号进行自适应多通道均衡的均衡性能最佳。

为了进一步提高单矢量均衡系统的均衡性能,利用时反的空-时聚焦特性对信道多途进行有效地抑制,再利用自适应判决反馈均衡器进行消除残余的码间干扰,这有效地降低了均衡后的误码率。针对判决反馈均衡器若出现判决错误时会导致错误传递现象,利用水声信道关于时间非对称的特性进行双向判决反馈均衡,进一步降低均衡误码率。对比分析了在不同环境参数、不同通信参数条件下单矢量自适应均衡的性能,以及研究分析了单矢量自适应均衡算法在时变信道中的性能。

参考文献

[1] Qureshi, S. U. H. Adaptive Equalization. Proc. IEEE, vol. 73, no.9, 1985, 1340-1387.
[2] John G. Proakis, Masoud Salehi. 数字通信: 第5版[M]. 电子工业出版社. 2012.
[3] 董方, 基于分数间隔的水声信道盲均衡算法研究[D], 南京信息工程大学, 2012.
[4] 马思扬, 王彬, 彭华. 基于分数间隔的水声信道盲均衡算法研究[J], 电子学报, 2017.
[5] 阮业武. 时变水声环境中的单矢量信道均衡技术[D]. 哈尔滨工程大学, 2018.

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codersnote

对学生党 赞赏是鼓励也是鞭策!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值