传染病传播模型(含matlab代码)

2020年初,一种新型冠状病毒袭击了中国武汉。

随着卫生设施的改善、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等曾经肆虐全球的传染性疾病已经得到有效的控制,但是一些新的、不断变异着的传染病毒却悄悄向人类袭来。长期以来,建立数学模型以描述疾病的传播过程从而寻找抑制传播的方法一直是科学家们探索的方向。但是由于疾病传播的复杂性,仅能从一般的传播机理角度建立大致的传播模型,现介绍一种与实际情况较为接近的传染病传播模型——

SIR模型

大多数传染病如天花、流感、肝炎、麻疹等治愈后均有很强的免疫力,所以病愈的人既非健康者(易感染者),也非病人(已感染者),他们已经退出传染系统,这种情况比较复杂,下面将详细分析建模过程。

一、基本假设

1.在疾病传播期内所考察地区的总人数N不变,既不考虑生死,也不考虑迁移.人群分易感染者(Susceptible)、**已感染者(Infective)病愈免疫的移出者(Removed)**三类,以下简称健康者,病人和移出者,t时刻人数分别记为S(t),I(t),R(t),t时刻这三类人在总人数中所占的比例分别记作s(t),i(t)和r(t)。

2.每个病人每天有效接触的平均人数是常数λ,称为日接触率.当病人与健康者有效接触时,使健康者受感染变为病人。

3.每天被治愈的病人占病人总数的比例为常数μ,称为日治愈率,病人被治愈后仍有可能被感染为病人,那么可认为1/μ是该疾病的平均传染期

4.初始时刻,只有少数个体处于感染状态,其他都是易染

手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8、NCS和GOMFCTEMPLATE 9、课程小结,资源分享
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页