luogu T192681

题目链接

较为简单的思路

打表观察 a , b , c a,b,c a,b,c三个数的特征,发现可以表示成 i , p , q i,p,q i,p,q三个数相乘的形式:
a = i ∗ p , b = i ∗ q , c = p ∗ q a=i*p,b=i*q,c=p*q a=ip,b=iq,c=pq
那么 g c d ( a , b , c ) = = 1 gcd(a,b,c)==1 gcd(a,b,c)==1就可以转化成 ( 先 假 设 p , q 两 者 互 质 ) : i 与 p ∗ q 互 质 , 即 i 与 p , q 分 别 互 质 (先假设p,q两者互质):i与p*q互质,即i与p,q分别互质 (p,q)ipqip,q
现在讨论 p , q 两 者 不 互 质 的 情 况 : g c d ( a , b , c ) = g c d ( p ∗ q , i ∗ g c d ( p , q ) ) , 显 然 不 等 于 一 p,q两者不互质的情况:gcd(a,b,c)=gcd(p*q,i*gcd(p,q)),显然不等于一 p,qgcd(a,b,c)=gcd(pq,igcd(p,q)),
所以我们有了新的结论: i , p , q 三 者 必 须 互 质 。 i,p,q三者必须互质。 i,p,q
然后我们从 a , b , c a,b,c a,b,c的角度再考虑一下 i , p , q i,p,q i,p,q三者的其它关系:
b = a ∗ c c − a , 即 i ∗ q = i ∗ p ∗ p ∗ q p ∗ ( q − i ) , 约 分 后 可 得 q − i = p b=\frac{a*c}{c-a},即i*q=\frac{i*p*p*q}{p*(q-i)},约分后可得q-i=p b=caac,iq=p(qi)ippq,qi=p
于是我们考虑对于一个确定的 n n n,如何得知在 c = = n c==n c==n时合法的方案数和最小的 a a a:枚举 c 的 因 子 作 为 p c的因子作为p cp,然后直接计算 c / p = q , q − i = p c/p=q,q-i=p c/p=q,qi=p
这样就有了通过题目的理论(我不是很确定枚举质因子的理论复杂度,不过应该是接近 O ( n l o g n ) O(nlogn) O(nlogn))
不过此时并不足以通过本题,第一个优化是 p 一 定 小 于 q p一定小于q pq
然后是一个足以通过本题的优化(具体证明该优化给程序的复杂度带来怎样的变化有点麻烦,不过以笔者的感觉是提速了100%):
即然 p , q p,q p,q互质,那么枚举因子就只需枚举哪些质因子属于 p p p,剩下的属于 q q q

#include<bits/stdc++.h>
using namespace std;
const int maxn=2e6+5;
inline char nc(){
    static char buf[100005],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000,stdin),p1==p2)?EOF:*p1++;
}
inline int read(){
    char ch=nc();int sum=0;
    while(!(ch>='0'&&ch<='9'))ch=nc();
    while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=nc();
    return sum;
}
int n,t,ans2[maxn],ans[maxn],pr[maxn],cnt,mi[maxn];
int pri[maxn],vis[maxn],num;
const int l=2e6;
void get(){
	for(int i=2;i<=l;i++){
		if(!vis[i]){pri[++num]=i;}
		for(int j=1;i*pri[j]<=l&&j<=num;j++){
			vis[i*pri[j]]=1;
			if(i%pri[j]==0)break;
		}
	}
}
inline int gcd(int a,int b){
	return b==0?a:gcd(b,a%b);
}
void dfs(int i,int p,int c){
	if(i==cnt+1){
		int q=c/p;
		int i=q-p;
		int a=i*p,b=i*q,g=i;
		if(gcd(g,c)!=1)return;
		ans[c]++;
		if(!ans2[c]){ans2[c]=a;}
		else ans2[c]=min(ans2[c],a);
		return ;
	}
	long long now=p;
	for(int j=1;j<=mi[i];j++){
		now=now*pr[i];
		if(now*now>c){dfs(i+1,p,c);return ;}
	}
	dfs(i+1,p,c);
	dfs(i+1,now,c);
}
signed main(){
	//freopen("test.in","r",stdin);
	//freopen("test.out","w",stdout);
	get(); 
	t=read();
	const int x=2000000;
		for(int c=2;c<=x;c++){
			ans[c]=ans[c-1];
			cnt=0;
			int tmp=c;
			for(int k=1;pri[k]*pri[k]<=tmp;k++){
				int j=pri[k];
				if(tmp%j==0){
					cnt++;pr[cnt]=j;mi[cnt]=0; 
					while(tmp%j==0){mi[cnt]++;tmp/=j;}
				}
			}
			if(tmp!=1){pr[++cnt]=tmp;mi[cnt]=1;}
			dfs(1,1,c);
		}
	while(t--){
		n=read();
		if(n==1)puts("0");
		else printf("%d %lld\n",ans[n],1ll*ans2[n]*n/(n-ans2[n]));
	}
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值