基于Glue ETL(提取、转换和加载)的serviceless 数据分析——二、数据清洗、转换

本文详细介绍了如何使用AWSGlue进行数据清洗和转换,包括从S3数据源提取数据,通过APIGateway、Lambda和Athena构建无服务器架构,以及对数据进行分区处理。最终目标是构建一个可以进行分析的动态、可扩展的数据服务。
摘要由CSDN通过智能技术生成

二、数据清洗、转换

此实验使用s3作为数据源

ETL:

E    extract         输入
T    transform     转换
L    load             输出

简易架构图

在这里插入图片描述

1、数据清洗

此步会将s3中的原始数据清洗成我们想要的自定义结构的数据。之后,我们可通过APIGateway+Lambda+Athena来实现一个无服务器的数据分析服务。

步骤图例
1、入口在这里插入图片描述
2、创建Job(s3作为数据源,则Type选择Spark,若为Kinesis等,选择Stream Spark)在这里插入图片描述
3、IAM角色需要有s3与Glue的权限在这里插入图片描述
4、选择s3脚本位置,若已经完成脚本的编写工作,则可以选择第二项或第三项,若无则Glue会提供默认脚本在这里插入图片描述
5、安全配置参数在这里插入图片描述建议:添加参数–enable-auto-scaling为true。每次在我们执行Job任务时,会根据运行 ETL 任务的数据处理单元(DPU)的个数来分配动态IP,在我们子网的动态IP数低于DPU数时,Job将会执行失败。此参数将会动态分配IP。
6、数据源()在这里插入图片描述
7、数据目标(我们会将清洗后的数据存储到新的s3桶)在这里插入图片描述
8、设计架构(在本案例中,我们会自定义脚本。所以不再在此处设计架构)(此处设计后,脚本会自动生成相关代码)在这里插入图片描述
9、保存在这里插入图片描述

编辑脚本
脚本中的args参数的键值需要从Job的安全配置参数中定义

1. 连接数据源(s3)

#数据源
datasource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "datasource")

2. 数据结构转换

mapped_readings = ApplyMapping.apply(frame = datasource, mappings = [("lclid", "string", "meter_id", "string"), \
                                                                     ("datetime", "string", "reading_time", "string"), \
                                                                     ("KWH/hh (per half hour)", "double", "reading_value", "double")], \
                                     transformation_ctx = "mapped_readings")

3. 数据结构拆分、定义

mapped_readings_df = DynamicFrame.toDF(mapped_readings)

mapped_readings_df = mapped_readings_df.withColumn("obis_code", lit(""))
mapped_readings_df = mapped_readings_df.withColumn("reading_type", lit("INT"))

reading_time = to_timestamp(col("reading_time"), "yyyy-MM-dd HH:mm:ss")
mapped_readings_df = mapped_readings_df \
    .withColumn("week_of_year", weekofyear(reading_time)) \
    .withColumn("date_str", regexp_replace(col("reading_time").substr(1,10), "-", "")) \
    .withColumn("day_of_month", dayofmonth(reading_time)) \
    .withColumn("month", month(reading_time)) \
    .withColumn("year", year(reading_time)) \
    .withColumn("hour", hour(reading_time)) \
    .withColumn("minute", minute(reading_time)) \
    .withColumn("reading_date_time", reading_time) \
    .drop("reading_time")

4. 清洗后的数据写入新s3

# write data to S3
filteredMeterReads = DynamicFrame.fromDF(mapped_readings_df, glueContext, "filteredMeterReads")

s3_clean_path = "s3://" + args['clean_data_bucket']

glueContext.write_dynamic_frame.from_options(
    frame = filteredMeterReads,
    connection_type = "s3",
    connection_options = {"path": s3_clean_path},
    format = "parquet",
    transformation_ctx = "s3CleanDatasink")

运行作业


    执行成功后,状态将变为"SUCCESS",失败将会给出失败信息,可在CloudWatch 中查看详情

在这里插入图片描述

在这里插入图片描述


清洗后的数据保存到了s3


在这里插入图片描述
数据清洗完毕后,可通过上一篇中的爬网程序步骤,将清洗后的数据的结构创建表到数据目录中,
此时我们可以使用Athena对清洗后的数据进行分析。

2、数据分区

接下来我们对数据进行分区处理(此处只提供了按天分区
重新进行数据清洗中的创建Job操作后,重写脚本
编辑脚本
连接数据源。表为上一步最后重新爬取生成的新表。

cleanedMeterDataSource = glueContext.create_dynamic_frame.from_catalog(database = args['db_name'], table_name = tableName, transformation_ctx = "cleanedMeterDataSource")

根据type与data_str分区

business_zone_bucket_path_daily = "s3://{}/daily".format(args['business_zone_bucket'])

businessZone = glueContext.write_dynamic_frame.from_options(frame = cleanedMeterDataSource, \
    connection_type = "s3", \
    connection_options = {"path": business_zone_bucket_path_daily, "partitionKeys": ["reading_type", "date_str"]},\
    format = "parquet", \
    transformation_ctx = "businessZone")

分区后的数据结果:
在这里插入图片描述
再次创建、运行爬网程序,将会在数据目录中生成新的分区表。

3、总结

    到这一步,我们已经使用Glue ETL对s3桶中的数据进行了清洗、分区操作。在进行上篇中的Athena操作后,我们已经可以通过Athena直接查询到清洗、分区后的数据集了。
    接下来,我们会通过使用APIGateway+Lambda+Athena来构建一个无服务器的数据查询分析服务。

  • 25
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值