是一道搜索题,和NYOJ上的坦克大战非常像,用优先队列+光搜就可以了。个人感觉这道题用dijkstra应该也可以解决,就是建图太麻烦了。题目:
Dogs
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1046 Accepted Submission(s): 373
Problem Description
Prairie dog comes again! Someday one little prairie dog Tim wants to visit one of his friends on the farmland, but he is as lazy as his friend (who required Tim to come to his place instead of going to Tim's), So he turn to you for help to point out how could him dig as less as he could.
We know the farmland is divided into a grid, and some of the lattices form houses, where many little dogs live in. If the lattices connect to each other in any case, they belong to the same house. Then the little Tim start from his home located at (x0, y0) aim at his friend's home ( x1, y1 ). During the journey, he must walk through a lot of lattices, when in a house he can just walk through without digging, but he must dig some distance to reach another house. The farmland will be as big as 1000 * 1000, and the up left corner is labeled as ( 1, 1 ).
We know the farmland is divided into a grid, and some of the lattices form houses, where many little dogs live in. If the lattices connect to each other in any case, they belong to the same house. Then the little Tim start from his home located at (x0, y0) aim at his friend's home ( x1, y1 ). During the journey, he must walk through a lot of lattices, when in a house he can just walk through without digging, but he must dig some distance to reach another house. The farmland will be as big as 1000 * 1000, and the up left corner is labeled as ( 1, 1 ).
Input
The input is divided into blocks. The first line in each block contains two integers: the length m of the farmland, the width n of the farmland (m, n ≤ 1000). The next lines contain m rows and each row have n letters, with 'X' stands for the lattices of house, and '.' stands for the empty land. The following two lines is the start and end places' coordinates, we guarantee that they are located at 'X'. There will be a blank line between every test case. The block where both two numbers in the first line are equal to zero denotes the end of the input.
Output
For each case you should just output a line which contains only one integer, which is the number of minimal lattices Tim must dig.
Sample Input
6 6 ..X... XXX.X. ....X. X..... X..... X.X... 3 5 6 3 0 0
Sample Output
3HintHint: Three lattices Tim should dig: ( 2, 4 ), ( 3, 1 ), ( 6, 2 ).
#include <iostream>
#include <cstdio>
#include <queue>
#include <string.h>
#include <algorithm>
using namespace std;
#define M 1010
struct point{
int x,y,step;
bool operator< (const point&p)const{
return step>p.step;
}
}p,newp;
int n,m,visted[M][M],sx,sy,ex,ey;
int addx[4]={1,-1,0,0};
int addy[4]={0,0,1,-1};
int map[M][M];
void init(){
p.x=sx;p.y=sy;
p.step=map[sx][sy];
visted[sx][sy]=1;
}
int bfs(){
priority_queue<point> qq;
qq.push(p);
while(!qq.empty()){
p=qq.top();
qq.pop();
for(int i=0;i<4;++i){
int newx=p.x+addx[i];
int newy=p.y+addy[i];
if(newx>0&&newx<=n&&newy>0&&newy<=m){
if(newx==ex&&newy==ey)
return p.step;
if(!visted[newx][newy]){
newp.x=newx;
newp.y=newy;
newp.step=map[newx][newy]+p.step;
qq.push(newp);
visted[newx][newy]=1;
}
}
}
}
return 0;
}
int main(){
//freopen("1.txt","r",stdin);
while(scanf("%d%d",&n,&m),n,m){
char cc;
memset(map,0,sizeof(map));
memset(visted,0,sizeof(visted));
for(int i=1;i<=n;++i){
for(int j=1;j<=m;++j)
{
cin>>cc;
if(cc=='X')
map[i][j]=0;
else
map[i][j]=1;
}
}
scanf("%d%d%d%d",&sx,&sy,&ex,&ey);
init();
int x=bfs();
printf("%d\n",x+map[ex][ey]);
}
return 0;
}