来源:http://poj.org/problem?id=3352
题意:在一个岛上有一些旅游景点,旅游景点之间有路。当施工的时候,若一条路在施工,则这条路是不能走得。问至少还需要增加多少条路,能够保证在施工的时候,任意两个旅游景点之间仍然是可通的。
思路:其实就是一个无向图割边 + 缩点的问题。这样考虑,在一个无向图中,如果一条边是割边,则如果这条边在施工,就会产生不可到达的点。因此可以缩点,缩点后,如果一个点的度为1,说明到达该点的路径只有一条,因此需要增加一条边。也就是说,如果能够保证题目中的条件,则应该在缩点后,任意两个点之间有两条路径可达。所以,若缩点后有n个度为1的点,则应该增加(n+1)/ 2 条边,加1的原因是考虑的奇数个度为1的点。
代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
#define CLR(arr,val) memset(arr,val,sizeof(arr))
const int N = 1010;
vector<int> vv[N];
int low[N],dfn[N],vis[N],instack[N],id[N],degree[N],flag[N][N];
int numpoint,numroad,timeorder,numcnt,numss;
void init(){
CLR(low,0);
CLR(dfn,0);
CLR(vis,0);
CLR(id,0);
CLR(flag,0);
CLR(degree,0);
CLR(vv,0);
timeorder = 0;
numcnt = 0;
numss = 0;
}
int min(int a,int b){
return a < b ? a : b;
}
void dfs(int x,int fa){
timeorder++;
numss++;
low[x] = dfn[x] = timeorder;
vis[x] = 1;
instack[numss] = x;
for(int i = 0; i < vv[x].size(); ++i){
int y = vv[x][i];
if(y == fa)continue;
if(!dfn[y]){
dfs(y,x);
low[x] = min(low[x],low[y]);
if(low[y] > dfn[x]){
numcnt++;
while(1){
int tt = instack[numss];
id[tt] = numcnt;
if(instack[numss--] == y)
break;
}
}
}
else{
low[x] = min(low[x],dfn[y]);
}
}
}
int main(){
//freopen("1.txt","r",stdin);
while(scanf("%d%d",&numpoint,&numroad) != EOF){
init();
int x,y;
for(int i = 0; i < numroad; ++i){
scanf("%d%d",&x,&y);
vv[x].push_back(y);
vv[y].push_back(x);
}
dfs(1,1);
int ans = 0;
for(int i = 1; i <= numpoint; ++i){
for(int j = 0;j < vv[i].size(); ++j){
int y = vv[i][j];
if(flag[i][y])continue;
if(id[i] != id[y]){
flag[i][y] = flag[y][i] = 1;
degree[id[i]]++;
degree[id[y]]++;
}
}
}
for(int i = 1; i <= numcnt; ++i){
if(degree[i] == 1)
ans++;
}
printf("%d\n",(ans+1)/2);
}
return 0;
}