DFS和BFS的实现(邻接矩阵、邻接表)

DFS和BFS的实现(邻接矩阵)

#include<iostream>
#include<queue>
using namespace std;

#define OK 1
#define Maxint 0
typedef int status ;
bool visited[10];

typedef struct
{
	char vexs[100];
	int arcs[100][100];
	int vexnum,arcnum;
}AMGraphy;

status LocateVex(AMGraphy G,int u)
{
	int i;
	for(i=1;i<=G.vexnum;i++)
	  if(u==G.vexs[i]) return i;
	return -1;  
}

status CreateUDN(AMGraphy &G)
{//采用邻接矩阵表示法,创建无向网G
   cin>>G.vexnum>>G.arcnum;    //输入总顶点数,总边数 
   for(int i=1;i<=G.vexnum;i++)
     cin>>G.vexs[i];          //依次输入点的信息 
     
   for(int i=1;i<=G.vexnum;i++)    //初始化邻接矩阵,边的权值均为Maxint 
      for(int j=1;j<=G.vexnum;j++)
	    G.arcs[i][j]=Maxint;
		
    for(int k=1;k<=G.arcnum;k++)   //构造邻接矩阵 
	{
		char v1,v2;
		int w;
		cin>>v1>>v2>>w;       //输入一条边依附的顶点及权值 
		int i=LocateVex(G,v1);
		int j=LocateVex(G,v2); //确定v1,v1在G中的位置,即顶点数组的下标 
		G.arcs[i][j]=w;       //边<v1,v2>的权值置为w 
		G.arcs[j][i]=G.arcs[i][j];	//置<v1,v2>的对称边<v2,v1>的权值为w	
	}
	return OK;
}

DFS(AMGraphy G,int v)
{
	cout<<v<<" ";visited[v]=true;
	for(int w=1;w<=G.vexnum;w++)
	  if((G.arcs[v][w]!=0)&&(!visited[w])) 
	    DFS(G,w);
}

BFS(AMGraphy G,int v)
{
	 for(int i=1;i<=G.vexnum;i++)
	 visited[i]=false;
	cout<<v<<" ";
	visited[v]=true;
	queue<int> Q;
	Q.push(v);
	while(!Q.empty())
	{
		int t=Q.front();
		Q.pop();
		for(int w=1;w<=G.vexnum;w++)
		{
			if(G.arcs[t][w]==1 && visited[w]==false)
			{
				visited[w]=true;
				cout<<w<<" ";
				Q.push(w);
			}
		}
	}
}

int main()
{
	AMGraphy G;
	CreateUDN(G);
	cout<<"邻接矩阵为:"<<endl;
	for(int i=1;i<=G.vexnum;i++)
	{
		for(int j=1;j<=G.vexnum;j++)
		cout<<G.arcs[i][j]<<" ";
		
		cout<<endl;
	}  
	cout<<"DFS遍历结果为:"<<endl;
	DFS(G,2);
	cout<<endl;
	cout<<"BFS遍历结果为:"<<endl;
	BFS(G,1);
	return 0;
}

以这个图为例运行:
在这里插入图片描述
在这里插入图片描述


DFS和BFS的实现(邻接表)

#include<iostream>
#include<queue>
using namespace std;
#define MVNum 100 //最大顶点数 
#define OK 1
typedef int status;
bool visited[10];

typedef struct ArcNode //边结点 
{
	int adjvex;        //该边所指向的顶点的位置 
	struct ArcNode *nextarc;  //指向下一条边的指针 
}ArcNode; 

typedef struct VNode
{
	char data;   //顶点信息 
	ArcNode *firstarc; //指向第一条依附该顶点的指针 
}VNode,AdjList[MVNum]; //AdjList表示邻接表类型
    
typedef struct
{	  
    AdjList vertices;    //vertics--vertex的负数 
    int vexnum,arcnum; //图的当前顶点数和弧数 
}ALGraph;       

status LocateVex(ALGraph &G,char u)
{
	int i;
	for(i=1;i<=G.vexnum;i++)
	  if(u==G.vertices[i].data) return i;
	return -1;  
} 

status CreateUDG(ALGraph &G)
{
	cin>>G.vexnum>>G.arcnum;   //输入总顶点数,总边数
	for(int i=1;i<=G.vexnum;i++)//输入各点,构造表头结点表
	{
	  cin>>G.vertices[i].data;     //输入顶点值 
	  G.vertices[i].firstarc=NULL; //初始化表头结点的指针域 
	}
	getchar(); 
	for(int k=1;k<=G.arcnum;k++)   //输入各边构造邻接表 
	{
		char v1,v2;
		cin>>v1>>v2;             //输入一条边依附的两个顶点 
		getchar();
		int i=LocateVex(G,v1);
		int j=LocateVex(G,v2);
	  ArcNode *p1,*p2;
	  p1=new ArcNode;
	  p1->adjvex=j;    //邻接点序号为j
	  p1->nextarc=G.vertices[i].firstarc;
	  G.vertices[i].firstarc=p1;  //将新结点*p1插入顶点vi的边表头部
	  p2=new ArcNode;
	  p2->adjvex=i;   //邻接点序号为i
	  p2->nextarc=G.vertices[j].firstarc; 
	  G.vertices[j].firstarc=p2;  //将新结点*p2插入顶点vj的边表表头 
    } 
    return OK;
}
DFS(ALGraph G,int v)
{
	ArcNode *p;
	p=new ArcNode;
	cout<<v<<" ";visited[v]=true;
	p=G.vertices[v].firstarc;
	while(p!=NULL)
	{
		int w=p->adjvex;
		if(!visited[w]) DFS(G,w);
		p=p->nextarc;
	}	
}

BFS(ALGraph G,int v)
{
	int i=0;
	for(i=1;i<=G.vexnum;i++)
	 visited[i]=false;
	 
	 cout<<v<<" ";
	 visited[v]=true;
	 queue<int> Q;
	 Q.push(v);
	 ArcNode *p;
	 p=new ArcNode;
	 while(!Q.empty())
	 {
	 	int t=Q.front();
	 	Q.pop();
	 	for(p=G.vertices[t].firstarc;p!=NULL;p=p->nextarc)
	 	{
           if(!visited[p->adjvex])
		   {
		   	  cout<<p->adjvex<<" ";
		   	  visited[p->adjvex]=true;
		   	  Q.push(p->adjvex);
		    }	 	 	
		}
	 }
}

int main()
{
	ALGraph G; 
	ArcNode *p;
	CreateUDG(G);
	cout<<"输出邻接表:"<<endl;
	for(int i=1;i<=G.vexnum;i++)
	{
			cout<<G.vertices[i].data;
			for(p=G.vertices[i].firstarc;p!=NULL;p=p->nextarc)
			  printf("->%d",p->adjvex);
			cout<<endl;  
	}
		cout<<endl;
		cout<<"DFS遍历结果为:"<<endl;
		DFS(G,2);
		cout<<endl;
		cout<<"BFS遍历结果为:"<<endl;
		BFS(G,1);
	return 0;
}

以这个图为例运行:
在这里插入图片描述
在这里插入图片描述

  • 10
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
好的,这里给出使用邻接矩阵来存储图,并实现DFSBFS算法的C语言代码示例。 首先,我们需要定义一个结构体来表示图: ``` #define MAX_VERTEX_NUM 100 // 最大顶点数 typedef struct { int vexs[MAX_VERTEX_NUM]; // 存储顶点的数组 int arcs[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; // 存储边的邻接矩阵 int vexnum; // 顶点数 int arcnum; // 边数 } Graph; ``` 其中,`vexs`数组存储顶点的值,`arcs`数组存储边的邻接矩阵,`vexnum`表示顶点数,`arcnum`表示边数。 接下来,我们可以定义一个函数来创建图: ``` void createGraph(Graph *G) { printf("请输入顶点数和边数:"); scanf("%d %d", &G->vexnum, &G->arcnum); printf("请输入顶点的值:"); for (int i = 0; i < G->vexnum; i++) { scanf("%d", &G->vexs[i]); } // 初始化邻接矩阵 for (int i = 0; i < G->vexnum; i++) { for (int j = 0; j < G->vexnum; j++) { G->arcs[i][j] = 0; } } printf("请输入每条边的起点和终点:"); int v1, v2; for (int k = 0; k < G->arcnum; k++) { scanf("%d %d", &v1, &v2); int i = locateVex(G, v1); int j = locateVex(G, v2); G->arcs[i][j] = 1; G->arcs[j][i] = 1; // 无向图需加上这行 } } ``` 该函数从标准输入中读取顶点数和边数,以及每个顶点的值,然后根据输入的起点和终点在邻接矩阵中设置对应的边。 我们还需要一个函数来查找某个值对应的顶点在图中的位置: ``` int locateVex(Graph *G, int v) { for (int i = 0; i < G->vexnum; i++) { if (G->vexs[i] == v) { return i; } } return -1; } ``` 接下来,我们可以实现DFS算法: ``` void DFS(Graph *G, int v, int visited[]) { printf("%d ", G->vexs[v]); visited[v] = 1; for (int i = 0; i < G->vexnum; i++) { if (G->arcs[v][i] == 1 && visited[i] == 0) { DFS(G, i, visited); } } } ``` 该函数从给定的起点v开始,输出其值并将其标记为已访问,然后递归遍历所有与v相连的未访问过的顶点。 最后,我们可以实现BFS算法: ``` void BFS(Graph *G, int v, int visited[]) { int queue[MAX_VERTEX_NUM]; int front = 0, rear = 0; printf("%d ", G->vexs[v]); visited[v] = 1; queue[rear++] = v; while (front < rear) { int w = queue[front++]; for (int i = 0; i < G->vexnum; i++) { if (G->arcs[w][i] == 1 && visited[i] == 0) { printf("%d ", G->vexs[i]); visited[i] = 1; queue[rear++] = i; } } } } ``` 该函数从给定的起点v开始,输出其值并将其标记为已访问,然后将其加入队列中。然后不断从队列中取出一个顶点,遍历其所有未访问过的邻接点,并将其加入队列中。 完整代码如下:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值