#include<stdio.h>
#include<stdlib.h>
#define MaxVex 255
#define TRUE 1
#define FALSE 0
typedef char VertexType; //顶点类型
typedef int Bool;
Bool visited[MaxVex]; //全局数组,记录图中节点访问状态
typedef struct EdgeNode //边表节点
{
int adjvex; //该邻接点在顶点数组中的下标
struct EdgeNode *next; //链域 指向下一个邻接点
} EdgeNode;
typedef struct VertexNode //头节点
{
VertexType data; //顶点信息
EdgeNode *firstedge; //边表头指针(指向第一条依附于该顶点的弧的指针)
} VertexNode,AdjList[MaxVex]; //顶点数组(结构体数组)
typedef struct Graph
{
AdjList adjList;
int numVertexes,numEdges; //图中当前的结点数以及边数
} Graph,*GraphAdjList;
/** 队列定义及相关操作(广度遍历会用到此循环队列) **/
typedef struct LoopQueue
{
int data[MaxVex];
int front,rear;
} LoopQueue,*Queue; //队列结构
void initQueue(Queue &Q)
{
Q->front=Q->rear=0;
}
Bool QueueEmpty(Queue &Q)
{
if(Q->front == Q->rear)
{
return TRUE;
}
else
{
return FALSE;
}
}
Bool QueueFull(Queue &Q)
{
if((Q->rear+1)%MaxVex == Q->front)
{
return TRUE;
}
else
{
return FALSE;
}
}
/**
* 队尾插入元素
*/
void EnQueue(Queue &Q,int e)
{
if(!QueueFull(Q))
{
Q->data[Q->rear] = e;
Q->rear = (Q->rear+1)%MaxVex;
}
}
/**
* 队头删除元素
*/
void DeQueue(Queue &Q,int *e)
{
if(!QueueEmpty(Q))
{
*e = Q->data[Q->front];
Q->front = (Q->front+1)%MaxVex;
}
}
/*************************************************/
/**
* 建立图的邻接表结构(此处以无向图为例)
*/
void CreateALGraph(GraphAdjList &G)
{
int i, j, k;
if(G==NULL)
{
G = (GraphAdjList)malloc(sizeof(Graph));
}
printf("输入图的结点数以及边数: ");
scanf("%d%d",&G->numVertexes,&G->numEdges);
fflush(stdin);
printf("===========================\n");
printf("输入各个顶点的数据:\n");
for (i=0; i<G->numVertexes; ++i)
{
printf("顶点%d: ",i+1);
scanf("%c", &(G->adjList[i].data));
G->adjList[i].firstedge = NULL;
fflush(stdin);
}
printf("===========================\n");
for (k=0; k<G->numEdges; ++k)
{
printf("输入(vi,vj)上的顶点序号: ");
scanf("%d%d",&i,&j);
EdgeNode *ptrEdgeNode = (EdgeNode*)malloc(sizeof(EdgeNode));
ptrEdgeNode->adjvex = j;
ptrEdgeNode->next = G->adjList[i].firstedge;
G->adjList[i].firstedge = ptrEdgeNode;
ptrEdgeNode = (EdgeNode*)malloc(sizeof(EdgeNode));
ptrEdgeNode->adjvex = i;
ptrEdgeNode->next = G->adjList[j].firstedge;
G->adjList[j].firstedge = ptrEdgeNode;
}
}
void DFS(GraphAdjList &G, int i)
{
visited[i] = TRUE;
printf("%c ", G->adjList[i].data);
EdgeNode *p = G->adjList[i].firstedge;
while(p)
{
if(!visited[p->adjvex])
{
DFS(G,p->adjvex); //递归深度遍历
}
p= p->next;
}
}
/**
* 深度优先遍历
*/
void DFSTraverse(GraphAdjList &G)
{
int i;
for (i=0; i<G->numVertexes; ++i)
{
visited[i] = FALSE; //初始化访问数组visited的元素值为false
}
for (i=0; i<G->numVertexes; ++i)
{
if(!visited[i]) //节点尚未访问
{
DFS(G,i);
}
}
}
/**
* 图的广度优先遍历
*/
void BFSTraverse(GraphAdjList &G)
{
int i;
Queue Q = (Queue)malloc(sizeof(LoopQueue));
for (i=0; i<G->numVertexes; ++i)
{
visited[i] = FALSE;
}
initQueue(Q);
for (i=0; i<G->numVertexes; ++i)
{
if(!visited[i])
{
visited[i] = TRUE;
printf("%c ", G->adjList[i].data);
EnQueue(Q, i);
while (!QueueEmpty(Q))
{
DeQueue(Q, &i);
EdgeNode *p = G->adjList[i].firstedge;
while (p)
{
if (!visited[p->adjvex])
{
visited[p->adjvex] = TRUE;
printf("%c ", G->adjList[p->adjvex].data);
EnQueue(Q, p->adjvex);
}
p = p->next;
}
}
}
}
}
/**
* 程序入口
*/
int main()
{
GraphAdjList G = NULL;
CreateALGraph(G);
printf("\n图的深度优先遍历为: ");
DFSTraverse(G);
printf("\n图的广度优先遍历为: ");
BFSTraverse(G);
printf("\n");
return 0;
}
/* test data:
8 9
a b c d e f g h
0 1
0 2
1 3
1 4
3 7
4 7
2 5
2 6
5 6
*/
简单邻接表的BFS和DFS
最新推荐文章于 2024-06-01 20:58:18 发布