求两个数的最大公约数、最小公倍数
为什么有两种方法呢,因为求最大公约数有两种方法,而最小公倍数=两个数相乘/最大公约数
方法一:
#include<iostream>
using namespace std;
int a,b,c,i;
int main()
{
cin>>a>>b;
if(a>b) c=b;
else c=a;
for(i=c;i>0;i--)
{
if(a%i==0 && b%i==0)
break;
}
cout<<"最大公约数:"<<i<<endl;
cout<<"最小公倍数:"<<a*b/i;
return 0;
}
方法二:
#include<iostream>
using namespace std;
int a,b,c;
int gcd(int a,int b)
{
if(a%b==0) return b;
else return gcd(b,a%b); //递归
}
int main()
{
cin>>a>>b;
cout<<"最大公约数:"<<gcd(a,b)<<endl;
cout<<"最小公倍数:"<<a*b/gcd(a,b);
}
求n个数的最大公约数、最小公倍数
#include<iostream>
using namespace std;
int a[100];
int MM(int x,int y) //最大公约数
{
int c=0,z=0,p=0,i=0;
if(x==0) return y;
if(y==0) return x;
if(x<y) c=x;
else c=y;
for(i=c;i>0;i--)
{
if(x%i==0 && y%i==0)
{
p=i;
break;
}
}
return p;
}
int II(int x,int y) //最小公倍数
{
int c=0,z=0,p=0,i=0,min=0;
if(x==0) return y;
if(y==0) return x;
if(x<y) c=x;
else c=y;
for(i=c;i>0;i--)
{
if(x%i==0 && y%i==0)
{
p=i;
break;
}
}
min=x*y/p;
return min;
}
int main()
{
int n=0,i=0;
cin>>n;
for(i=0;i<n;i++)
cin>>a[i];
int max=MM(a[0],a[1]);
int min=II(a[0],a[1]);
if(n>2)
{
for(i=2;i<n;i++)
{
max=MM(max,a[i]);
min=II(min,a[i]);
}
}
cout<<"n个数的最大公约数为:"<<max<<endl;
cout<<"n个数的最小公倍数为:"<<min;
return 0;
}