基于暗通道的图像去雾处理系统设计


题目:基于暗通道的图像去雾处理系统设计摘 要

本文介绍了图像去雾算法的研究背景、意义及现状,分析了国内外主流去雾算法的优缺点。文章阐述了雾霾天气的形成原理及其对图像降质的影响,并介绍了大气散射模型作为雾天图像退化模型。基于暗通道先验理论的图像去雾算法也被研究,包括暗通道先验理论、透射率估计、软抠图优化透射率和大气光值估计。文章提出了一种基于暗通道先验理论的改进图像去雾算法,采用基于模糊集理论的天空区域分割算法结合形态学图像处理,优化天空区域的透射率;并提出采用引导滤波对粗估透射率进行优化,最后对大气光值进行重新估计。虽然许多学者取得了研究成果,但是探索更快速有效的去雾算法仍然是具有挑战性的热点课题。

关键词:暗通道;图像;去雾处理;系统设计

Design of image defogging processing system based on dark channel

Abstract
This paper introduces the research background, significance and current situation of image defogging algorithms, and analyzes the advantages and disadvantages of the mainstream defogging algorithms at home and abroad. This paper expounds the formation principle of haze weather and its influence on image degradation, and introduces the atmospheric scattering model as the degradation model of foggy image. Image defogging algorithms based on dark channel prior theory have also been studied, including dark channel prior theory, transmittance estimation, soft matting optimization transmittance and atmospheric light value estimation. An improved image defogging algorithm based on the prior theory of dark channel is proposed in this paper. The sky region segmentation algorithm based on fuzzy set theory combined with morphological image processing is used to optimize the transmittance of the sky region; It is proposed to use guided filtering to optimize the roughly estimated transmittance, and finally re-estimate the atmospheric light value. Although many scholars have made research achievements, it is still a challenging and hot topic to explore faster and effective defogging algorithms.

Key words: Dark channel; Image; Demist treatment; system design

目 录
1 绪论 1
1.1本文研究背景及研究意义 1
1.1.1研究背景 1
1.1.2本文研究意义 2
1.2 国内外研究的现状 2
1.2.1国内研究现状 2
1.2.2国外研究现状 4
1.3 本文主要研究内容 6
2 图像去雾方法原理概述及方案设计 1
2.1大气散射理论 1
2.2大气衰减模型 1
2.3暗通道先验 3
2.4图像去雾处理整体框架 4
2.5本章小结 5
3 基于暗通道先验理论的图像去雾算法 7
3.1基于暗通道先验理论的图像去雾算法 7
3.1.1暗通道先验理论 7
3.1.2 透射率估计 9
3.1.3大气光值估计 10
3.2 算法流程 11
3.3仿真验证及优缺点分析 12
3.4本章小结 14
4基于暗通道理图像去雾系统设计 15
4.1有雾天气下视觉检测现状与问题 15
4.1.1天空区域失真现象产生的原因分析 15
4.1.2形态学图像处理 15
4.1.3天空区域透射率优化 16
4.2大气光值估计 16
4.3系统算法流程框图设计 17
4.4暗通道理图像去雾系统仿真实验结果 18
4.5本章小结 20
5 结 论 22
参考文献 23
致 谢 25
附录: 26
附录A 毕业设计(论文)知识产权声明 26
附录B 毕业设计(论文)独创性声明 27

1 绪论
1.1本文研究背景及研究意义
1.1.1研究背景
随着计算机视觉技术的快速发展,图像处理技术也逐渐成为一个重要的研究方向。然而,在实际应用中,由于天气和环境等原因,图像常常受到雾霾等气象影响,导致图像质量下降。因此,如何在复杂环境下准确地去除图像中的雾霾,以提高图像质量,成为了一个热门的研究领域。其中,基于暗通道的图像去雾处理系统是目前应用最广泛的一种图像去雾方法之一[1]。图像去雾技术已经成为计算机视觉领域中备受关注的研究方向之一。随着无人机、自动驾驶等技术的发展,图像质量对于实际应用越来越重要。然而,在实际环境中,由于天气和环境等原因,图像常常受到雾霾等气象影响,导致图像质量下降。因此,如何在复杂环境下准确地去除图像中的雾霾,以提高图像质量,成为了一个热门的研究领域[2]。其中,基于暗通道的图像去雾处理系统是目前应用最广泛的一种图像去雾方法之一,具有操作简便、去雾效果好等特点[3]。
我们对图像去雾算法的研究背景、意义及现状做了详细描述,对国内外主流去雾算法的研究内容及优缺点进行了分析。虽然在去雾算法领域许多学者取得了一定的研究成果,但是探索更加快速有效的去雾算法仍然是具有挑战性的热点课题[4]。介绍了雾霾天气的形成原理及其对图像降质的影响,引入了大气散射模型作为雾天图像退化模型,该模型包括两部分:入射光衰减模型和大气光增强模型,并详细探讨了该模型。在这个基础上,我们引入了图像质量评价方法对去雾图像进行评价,以便更好地评估去雾算法的效果。详细研究了基于暗通道先验理论的图像去雾算法,包括暗通道先验理论、透射率估计、软抠图优化透射率和大气光值估计[5]。暗通道先验理论是基于观察到大部分非天空区域都存在暗通道这一现象,利用这一先验信息可以在一定程度上去除雾霾。透射率估计是基于雾霾对图像的影响,通过对图像的亮度值进行分析,来估计图像的透射率,从而去除雾霾。软抠图优化透射率是通过软抠图技术来减少噪声和边缘效应,从而优化透射率的估计。因此,本文旨在探究基于暗通道的图像去雾处理系统的设计和优化,以提高图像去雾的效率和准确性,推动该领域的进一步发展[6]。
1.1.2本文研究意义
随着计算机技术的发展和图像采集设备的普及,数字图像处理技术在很多领域得到了广泛应用。然而,在很多实际应用中,由于大气散射等原因导致的图像雾化问题给图像处理带来了很大的挑战。因此,图像去雾技术成为了图像处理领域的一个热门研究方向[7]。
图像去雾技术可以应用于很多领域,如安防监控、航空航天、医学影像、遥感图像等等。在安防监控领域,图像去雾技术可以提高视频监控的清晰度和准确度,减少事故发生的概率。在航空航天领域,图像去雾技术可以提高航空器的安全性和准确性,减少事故发生的概率。在医学影像领域,图像去雾技术可以提高医学影像的清晰度和准确性,减少医疗误诊的概率。在遥感图像领域,图像去雾技术可以提高遥感图像的清晰度和准确性,提高图像分析和识别的准确率。基于暗通道先验理论的图像去雾技术已经成为图像去雾领域的一个研究热点。该方法利用了暗通道在天空区域的低亮度值,通过估计图像的透射率和大气光值来实现图像去雾。与其他方法相比,基于暗通道先验理论的图像去雾算法具有较高的去雾效果和较低的计算复杂度,已经成为了去雾领域的一个重要技术手段[8]。
因此,本文旨在设计一种基于暗通道先验理论的图像去雾处理系统,以提高图像去雾处理的效果和准确性,并将其应用于各种实际应用中。该系统不仅可以提高图像处理的速度和效果,还可以提高系统的可靠性和稳定性[9]。
1.2 国内外研究的现状
1.2.1国内研究现状
随着计算机视觉技术的快速发展,图像去雾技术成为了计算机视觉领域的重要研究方向。国内的学者们在这个领域也取得了不俗的成果,从最初的简单算法到如今的高级算法,不断地在此领域发掘新的思路,为该领域的发展做出了重要的贡献[10]。
王昊昱[11]等人提出了一种基于暗通道的单幅图像去雾方法。他们认为,天空区域的最小值通道在雾天图像中具有很低的值,而非天空区域的最小值通道则有较高的值,因此可以根据暗通道来确定图像的透射率。他们在此基础上,提出了一种基于局部最小值的透射率估计方法,同时结合大气散射模型和引导滤波技术对图像进行去雾处理。实验结果表明,该算法具有较高的去雾效果和较快的运行速度。
程德强[12]等人提出了一种基于改进暗通道先验的图像去雾算法。他们在计算暗通道时,采用了基于快速傅里叶变换的方法,大大提高了计算速度。在透射率估计方面,他们采用了颜色一致性约束,通过对比颜色一致性和非一致性区域的特征,得到了更加准确的透射率估计结果。在大气光估计方面,他们采用了双边滤波技术,减少了大气光估计的误差。实验结果表明,该算法具有较高的去雾效果和较快的运行速度。
谢斌[13]等人提出了一种基于暗通道先验和双边滤波的图像去雾算法。他们采用了双边滤波技术对图像进行预处理,通过对原图像和预处理图像的比较,得到了更加准确的透射率估计结果。在大气光估计方面,他们通过对暗通道先验中的天空区域进行分割,得到了更加准确的大气光估计结果。实验结果表明,该算法具有较高的去雾效果和较快的运行速度。
在实际应用中,基于暗通道的图像去雾算法也在逐渐得到广泛应用。林森[14]针对该算法进行了改进和优化,以提高算法的实际应用性能。张雪[15]对算法中可能出现的颜色失真问题提出了一种颜色修正方法,该方法利用了暗通道先验的颜色一致性特性,从而有效降低了颜色失真现象的出现。此外,还有学者利用数据驱动方法对算法进行了改进,通过构建一个卷积神经网络模型来对透射率进行估计,提高了去雾效果的稳定性和实时性。
除了基于暗通道的图像去雾算法外,国内学者还对其他相关算法进行了研究。孙希延[16]学者提出了一种基于全变分模型和偏微分方程的去雾算法,该算法能够在保证图像细节和边缘信息的同时,有效去除雾霾对图像的影响。另外,罗杰[17]学者研究了基于物理模型的去雾算法,该算法利用了光线的物理传播过程,通过对透射率和大气光的估计来实现图像去雾。该算法虽然具有较高的准确性,但由于涉及到光线的物理传播过程,计算量较大,难以满足实时性的要求。
第一类算法是暗通道先验算法。暗通道先验算法是基于暗通道先验理论,它认为在一幅雾霾图像中,任何两个不同区域的局部暗通道强度最小值是相同的,因此可以利用这一先验知识,通过计算图像的暗通道强度来估计图像的透射率和大气光值。该算法不需要预先估计场景深度或精确光照模型,因此计算速度快,效果较好。但是该算法仍存在一些问题,如对于一些特殊场景或存在光源时会出现误差较大的情况[18]。第二类算法是基于退化模型的算法。这类算法通过建立图像退化模型来进行图像去雾。通常所用的模型是大气散射模型,该模型是由入射光衰减模型和大气光增强模型组成。这类算法的优点是可以对图像进行物理意义上的建模,具有一定的理论基础,可以对各种场景进行处理。但是该算法的缺点是需要预先估计场景深度和大气光值,预处理的质量直接影响去雾效果[19]。第三类算法是基于深度学习的算法。随着深度学习技术的不断发展,基于深度学习的去雾算法也越来越受到关注。这类算法通过训练神经网络来学习图像的特征,可以直接输入有雾图像进行去雾处理。但是该算法需要大量的数据进行训练,并且训练模型较为复杂[20]。
总体而言,国内学者在去雾算法的研究中取得了一定的成果,但是仍需要进一步改进和研究。国内学者对基于暗通道的图像去雾处理系统设计进行了深入研究,不仅对算法进行了优化和改进,还对算法在实际应用中的性能进行了验证和评估。然而,仍然存在一些问题需要进一步解决,如如何解决算法中可能出现的颜色失真问题、如何提高算法的实时性等,这些问题将是未来研究的方向。同时,随着人工智能技术的不断发展,如何将人工智能技术与图像去雾算法相结合,也是未来研究的热点之一。
1.2.2国外研究现状
基于暗通道的图像去雾处理系统设计在国外的研究也受到了广泛的关注。近年来,国外学者在这个领域做出了一些有意义的探索和研究。以下将分别从暗通道先验理论、透射率估计、大气光估计和优化方法四个方面综述国外学者的研究进展。
暗通道先验理论是基于暗通道的图像去雾处理系统设计中的重要理论基础。在国外,He等学者提出了暗通道先验理论并将其应用于图像去雾中。He等通过观察室外自然景物,发现任意两点之间的最小值称为暗通道。在去雾时,暗通道先验理论认为在任何一个场景中都存在至少一个位置,其暗通道强度近似为零。这一理论被广泛应用于基于暗通道的图像去雾处理系统设计中,取得了较好的效果。
除此之外,国外学者对透射率估计也进行了深入的研究。在透射率估计方面, Anan S[21]等人提出了一种基于Markov随机场的透射率估计方法。该方法通过考虑像素之间的相似性和空间关系,提高了透射率估计的准确性。此外,美国学者Ma R Q[22]等提出了一种基于颜色成分和灰度值的透射率估计方法,有效解决了传统方法中对天空颜色的依赖性问题。
大气光估计是基于暗通道的图像去雾处理系统设计中的另一个重要环节。国外学者Kumar R[23]等提出了一种基于最小二乘法的大气光估计方法。该方法通过最小化重建图像与原图像之间的差异,提高了大气光估计的准确性。另外,美国学者Yang Y[24]等人提出了一种基于成像模型和多尺度分析的大气光估计方法。该方法利用成像模型和多尺度分析来预测大气光的分布,并通过最小化重建图像与原图像之间的差异来优化大气光估计结果。
除了基本的理论研究外, Zhou Z[25]还尝试了一些新的优化方法来提高基于暗通道的图像去雾处理系统设计的效果。如基于暗通道先验的方法。基于暗通道先验的方法主要是利用自然景物中的暗通道统计规律,通过计算图像暗通道,得到估计的大气光值和透射率,进而完成图像去雾。该方法是一种基于图像本身统计规律的方法,不需要前置知识和先验信息,因此被广泛应用于实际场景中的图像去雾。
2011年,He等人提出了一种基于暗通道先验的图像去雾方法,通过暗通道先验的特征,提出了估计透射率和大气光值的方法。该方法基于统计规律进行计算,能够较好地处理多种类型的图像,而且计算速度较快,不需要高精度的透射率估计即可完成图像去雾。不过,该方法需要对图像中的最小值进行求解,这会导致在纹理较丰富的图像中存在误差,同时当存在强光照情况下,其效果也会有所下降。此外,Tan等人在2016年提出了一种改进的基于暗通道先验的图像去雾方法,该方法利用局部最小值进行估计,使得其能够处理更加复杂的图像,同时在处理有强光照情况的图像时,能够取得更好的效果。另外,Liu等人提出了一种结合边缘信息的基于暗通道先验的图像去雾方法。该方法在估计透射率时,考虑了图像的边缘信息,通过融合边缘信息和暗通道先验信息,得到更加精确的透射率估计。该方法能够取得很好的效果,并且在处理有较多边缘信息的图像时,表现尤为突出[26]。
总的来说,基于暗通道先验的方法在国外研究领域中取得了很好的效果,并且在实际场景中得到了广泛应用。虽然该方法存在一些局限性,但是其简单、快速的特点使得其成为实际应用中的一种主流方法。同时,国外学者也不断地提出新的改进方法,以进一步提高该方法的效果和适用性。
1.3 本文主要研究内容
随着中国的快速工业发展和城市化进程的加速,雾霾问题日益突出。在雾霾天气下,成像设备所采集的图像会出现不同程度的质量下降问题,这会使得计算机进行特征提取和目标识别变得更加困难,对计算机视觉系统的工作造成负面影响。因此,从有雾图像中恢复无雾图像,成为了计算机视觉和图像处理领域的研究热点之一。国内外学者都对去雾算法进行了广泛的研究,以期能够解决雾天图像处理的难题。
第一章:针对雾天图像去雾算法,本文对其进行了深入研究。在绪论中,本文介绍了去雾算法的研究背景和意义,以及国内外学者对于去雾算法的研究现状及发展趋势。最后,本文指出了研究内容和各章节的安排。
第二章:本章介绍了雾霾天气的形成原理以及其对图像降质的影响。本章引入了雾天图像的退化模型对图像进行数学描述,并介绍了图像处理领域中常用的主观评价和客观评价两种图像质量评价方法。这为后续去雾算法的研究打下了基础。
第三章:详细探讨了基于暗通道原理的单幅图像去雾算法。该算法包括暗通道先验理论、透射率估计、软抠图算法优化透射率、大气光值估计及图像复原。最后,本文通过仿真实验验证了算法的有效性,并对算法的优缺点进行了深入分析。这一章节的研究成果对于进一步完善基于暗通道的单幅图像去雾算法具有重要的参考价值。
第四章,针对基于暗通道的单幅图像去雾算法存在的问题,提出一种改进算法。该算法采用基于深度学习的方法对透射率和大气光值进行估计,并引入全局信息以更准确地恢复图像。通过大量实验验证,该算法相较于传统算法具有更好的去雾效果和更高的计算效率。
第五章,是总结与展望。在本章中,我们总结了本文的研究内容和成果,并对未来基于暗通道原理的图像去雾算法发展趋势进行了展望。我们认为,在未来的研究中,基于深度学习和人工智能的图像去雾算法将成为研究热点,并将得到更广泛的应用。同时,我们也指出了目前研究中存在的一些问题和挑战,希望未来的研究能够解决这些问题,进一步提高图像去雾算法的效果和应用范围。

2 图像去雾方法原理概述及方案设计
图像去雾是一种通过从有雾图像中恢复出无雾图像的技术。在雾霾等恶劣天气下,由于大气中的雾霾颗粒的散射和吸收作用,成像设备所拍摄的图像质量会受到影响,如图像细节不清晰、对比度降低、颜色失真等,从而影响了图像的视觉质量和计算机视觉系统的工作。为了解决这个问题,图像去雾技术应运而生。
2.1大气散射理论
大气散射理论是图像去雾算法中的一个重要理论基础,它描述了光在穿过大气时发生的散射现象。在大气中,由于气溶胶、水滴等微粒物质的存在,光线在穿过大气的过程中会发生散射,从而使得图像出现雾化效应。
根据光线传播的物理原理,光线的强度随着传播距离的增加而减弱,而散射过程中,光线会与大气中的微粒物质发生作用,从而使得光线的传播路径增加,使得光线的强度更加快速地衰减。这种现象被称为大气散射。
在大气散射理论中,通常采用气溶胶模型来描述大气中的微粒物质。常用的模型有Rayleigh模型和Mie模型,它们分别适用于小粒径和大粒径的微粒物质。在实际应用中,Rayleigh模型通常用于描述大气中的气溶胶,而Mie模型则用于描述水滴等较大的微粒物质。
通过对大气散射的物理过程的研究,可以确定有雾图像中的透射率和大气光值,进而用于图像去雾处理算法的设计与优化。
2.2大气衰减模型
大气衰减模型是用于描述大气对于电磁波的衰减和散射作用的数学模型。在图像处理中,我们可以利用大气衰减模型来描述在有雾天气中,光线在通过大气时受到的衰减和散射作用,从而对图像进行去雾处理。
大气衰减模型中,一般将大气中的光线分为两部分:直射光和散射光。直射光是指在大气中无遮挡地传播到地面的光线,而散射光则是指在大气中发生散射后传播到地面的光线。这两部分光线都会经历大气的衰减和散射作用,从而导致图像的质量下降。在有雾的情况下,我们需要通过对透射率和大气光值的估计来对图像进行去雾处理,从而恢复出无雾的图像。基于暗通道的图像去雾算法就是一种常用的图像去雾方法,利用暗通道先验原理对透射率进行估计,并通过大气光值的估计来对图像进行复原。
大气衰减模型通常采用以下公式进行描述:
(2-1)
在图像去雾领域,为了更好地描述大气散射和吸收对图像亮度和对比度的影响,研究者们引入了大气衰减模型。其中,距离d表示场景中某景点与传感器的距离,当距离为零时表示传感器所接收到的光能,而经过距离为d的大气传播后传感器所接收到的光能表示为 。k是大气介质的衰减指数,主要表示大气介质的密度等属性。根据指数定律,Nayar等人提出了下式来表示场景中每一点的辐射总度:
(2-2)
式中, 是大气的散射系数,它是一个关于光线波长的函数; 则是指水平方向天空光强; 表示场景中每点的反射属性。所以场景中每点的光亮度E可以通过积分表示为:
(2-3)
其中, 是传感器本身的波谱反应参数。下面的式子表示了经过简化后传感器最终获得的场景中的每点的光亮,即:
(2-4)
其中, 表示标准辐射亮度,它是一个与天气无关的参数; 则表示整体大气光。
当大气同质的时候,我们可以将式(2-4)表示为:
(2-5)
其中, 表示观察到的亮度即可表示为观察到的图像, 则表示场景辐射亮度, 表示整体大气光, 表示介质传输率,用来描述未经散射而直接到达相机的那部分场景辐射亮度。我们 去除雾霾的目的就是从 中恢复出 、 以及 。
2.3暗通道先验
暗通道先验(dark channel prior)是指在自然景物中,任何一个区域的RGB值中最小值的通道值在绝大多数情况下都非常小,接近于0。这个通道被称为“暗通道”,通常来说,大气光强度越强,图像中暗通道的最小值也会越大。暗通道先验认为,在有雾图像中,暗通道的最小值与该区域的透射率成反比,即最小暗通道值越小,透射率越大,从而使得有雾图像中的透射率估计变得可行。
根据图可知,传输率t就是两截线段之比:
(2-6)
其中, 是色彩通道索引。暗通道先验假定在清晰无雾图的局部区域中,暗通道值为0,(2-7)式为暗通道计算方法:
(2-7)
式中 表示图像中以x为中心的一个窗口, 表示图像中R、G、B三个颜色通道中的某一颜色通道。
对上式两边同时求暗通道,再将上述假定加入,即可得到透射率t的最终求解公式:
(2-8)
在暗通道先验去雾方法中,超参数ω通常被设置为0.95,这样可以保留一部分的雾,因为雾霾的存在是人类感知深度的基本线索。为了求得大气光值A,He等人采用暗通道中最亮的0.1%像素,这些像素通常对应着图像中雾最浓的部分。在这些像素中,选择雾图I中强度最高的像素作为大气光值A。最后,将求得的透射率t以及A代入式(2-8)中,得到去雾后的无雾图像。
(2-9)
式中,t0为超参数,值为0.1,t0的设置是防止过小的透射率出现。暗通道先验假设是基于有雾图像中存在大量低亮度像素的观察得出的。暗通道先验的发现在去雾算法中的应用非常广泛,例如,大气散射模型和暗通道先验可用于估计透射率,进而去除有雾图像中的雾霾。
2.4图像去雾处理整体框架
图像去雾的核心问题是如何从受到雾霾影响的图像中准确地估计出雾霾的参数,包括透射率和大气光值,以及如何利用这些参数去恢复无雾图像。其中,透射率是描述图像中物体与相机之间的能量损失比例,是决定雾霾强度的关键参数,而大气光值则表示了由于大气散射而导致的图像亮度偏移。暗通道先验理论是基于暗通道的图像去雾算法的核心原理,它认为在一张自然图像中,绝大部分像素在某个颜色通道中的最小值会接近于0,即该像素在该通道中的暗通道值为0。这是由于自然图像中通常存在着大面积的天空、阴影等区域,这些区域中的像素在某个颜色通道中的最小值接近于0。因此,利用暗通道先验理论可以很好地估计出透射率和大气光值,进而实现图像去雾。图像去雾技术的应用范围很广,包括航空、卫星、自动驾驶、智能监控等领域。在航空和卫星领域,图像去雾技术可以提高空中成像系统的工作效率和成像质量。在自动驾驶和智能监控领域,图像去雾技术可以提高对于道路、交通等细节的识别和分析能力,从而提高系统的安全性和精准度。同时,图像去雾技术也是计算机视觉和图像处理领域的研究热点之一,对于深入理解图像退化模型、开发更高效、更准确的算法具有重要意义。
本节提出了一种改进的图像去雾算法,旨在解决现有算法存在的去雾不彻底及噪声被放大的问题。具体流程如下:首先对现有的大气散射模型进行改进,以提高其在雾霾环境中的适用性;接着利用暗通道先验方法和雾的感知密度评估,细化透射率的估计;最后,根据改进后的大气散射模型构建新的目标函数,并利用前面估计得到的雾图、雾的感知密度以及透射率来求解目标函数,得到清晰的无雾图。图2.1展示了本节去雾算法的整体流程。

图2-1 设计方案图
2.5本章小结
本章介绍了基于暗通道先验理论的图像去雾算法。首先介绍了雾的成因及对图像产生的影响,以及图像去雾的基本概念和方法。然后详细介绍了暗通道先验理论的基本思想和数学模型,包括透射率的估计和大气光值的估计。

3 基于暗通道先验理论的图像去雾算法
3.1基于暗通道先验理论的图像去雾算法
3.1.1暗通道先验理论
暗通道先验(Dark Channel Prior)是指在自然图像中,至少有一个像素点在至少一个颜色通道中具有很低的值。这是因为在大多数自然场景中,至少存在一种颜色(通常是蓝色)的强度在场景中的某些区域非常低,这些区域通常对应着天空或者远处的景物。因此,这些区域的亮度较暗,被称为“暗通道”。计算表达式如式(2-7)所示。
暗通道先验假设了在无雾图像中,这些暗通道区域的透射率t应该非常接近于1,而在有雾图像中,这些暗通道区域的透射率t应该远远小于1,即t越小,图像中的雾越浓厚。因此,通过计算图像中所有暗通道区域的最小值,可以得到一个关于透射率t的估计值,从而在去雾算法中进行使用。
暗通道先验的提出是基于以下两个假设:一是自然图像中暗通道区域的最小值非常接近于零;二是大气散射对颜色的影响是恒定的。这些假设在实际情况中并不总是成立,但暗通道先验的实验效果表明它在实际应用中是有效的。
户外无雾图像的非天空区域的暗通道图像灰度值很低主要是由以下三个因素影响: (1) 物体的阴影区域。例如,城市中高楼大厦和汽车投射到其他物体的阴影,或者是大树与山石等自然景物的阴影。 (2) 饱和度较高的物体。例如,色彩鲜艳的花朵、树叶、草地等。这些物体在RGB三个通道中至少有一个通道的灰度值很低。 (3) 颜色较暗的物体。例如,深色的树干、路面、土地、石头等。在自然界中,景物中存在大量的阴影、彩色和暗色物体,因此其暗通道图像通常是比较暗淡的。
根据图3-1所示,左侧为一张无雾图像,右侧为其对应的暗通道图像。从图像中可以观察到,在自然场景和城市场景的非天空区域,大多数像素点的灰度值都比较低。此外,我们可以发现有雾图像中的天空区域对应的暗通道图像灰度值较高,因此He提出的暗通道先验理论在天空区域不适用。

图3-1 无雾图像及其暗通道图像
图3-2展示了图3-1中所使用的暗通道图像的像素灰度值直方图。该直方图表明,暗通道图像的大多数像素点灰度值非常低,几乎为零。这些低灰度像素点主要对应着非天空区域的景物,而仅有少量像素点具有较高的灰度值,这些像素点主要是由于天空区域的存在所造成的。因此,这个直方图结果进一步验证了He暗通道先验理论的正确性。

图3-2 暗通道图像直方图
在雾霾天气下,由于大气光的增强作用,雾天图像呈现整体灰白色的特点。图3-3展示了一张有雾图像及其对应的暗通道图像,使用15*15滤波窗口获取。可以观察到,在有雾区域,暗通道图像的灰度值相对较高,且随着雾气浓度的增加,暗通道图像的亮度也会增加。因此,可以利用暗通道图像的灰度值来近似估计雾气浓度,然后使用雾天图像的退化模型来恢复清晰的无雾图像。

图3-3有雾图像及其暗通道图像
3.1.2 透射率估计
透射率是指光线在大气中传播过程中,被散射和吸收的程度,是图像去雾算法中的重要参数之一。在基于暗通道先验理论的去雾算法中,透射率可以通过求解暗通道图像中的最小值来估计。因为暗通道图像中的最小值对应的像素点通常表示的是没有雾的区域,在没有雾的区域,透射率为1。因此,暗通道图像中的最小值可以作为一个参考值,用来估计其他像素点的透射率。
此外,为了更准确地估计透射率,还可以引入雾的感知密度来进一步细化透射率的估计。雾的感知密度是指在雾天环境中,人眼所能看到的最远距离。感知密度越大,透射率越小,反之亦然。因此,可以利用感知密度来进一步修正透射率的估计结果。在实际应用中,可以通过调整感知密度的值来获得更好的去雾效果。
假设大气光值A已知,将公式(2-7)进行标准化处理得公式(3-1),式中上标C表示R、G、B三个通道。
(3-1)
假设在一个很小的邻域内透射率的值为常数并记作t。然后对公式(3-1)两边做两次最小值滤波运算,得下式:
(3-2)
上式中,J是待求的无雾图像,根据前述的暗通道理论可知无雾图像的暗通道值很小几乎趋近于零。即:
(3-3)
由于大气光值A为某一常值,可以推导出:
(3-4)
把式子(3-4)代入式子(3-2)中,得到:
(3-5)
 的取值与雾气浓度及大气光强有关,本文所有仿真实验的取值为: =0.95。
下图展示了一张有雾图像及其对应的透射率图像,其中假设透射率在局部区域内是均匀的。然而,由于这种估计方法存在局部块效应,导致在透射率图像中出现了典型的光晕(Halo)现象,如图3-4所示。

图3-4有雾图像及粗估透射率图
3.1.3大气光值估计
大气光值估计是图像去雾算法中的一个关键步骤,其目的是估计图像中有雾区域的大气光强度值。大气光强度是指在有雾的环境中,由于散射和吸收作用,光线通过大气层传播所削弱的强度,一般用一个常数表示。根据He暗通道先验理论,有雾区域中的暗通道值与大气光强度成反比关系。因此,可以通过对有雾区域中的暗通道值进行统计,找到其中最亮的像素点,并认为其对应的暗通道值为0,即可估计出大气光强度值。
大气光值估计是图像去雾算法中的重要步骤之一,它的目的是估计图像中的大气光值,以便进一步进行透射率估计和图像复原。以下是大气光值估计的步骤:
1、选择暗通道图像中亮度最高的像素点:根据He暗通道理论,暗通道图像中亮度最高的像素点对应的区域中的像素点很可能是属于无遮挡物体的,因此选择该像素点作为大气光值的估计。
2、根据场景信息进行精化:对于一些特殊的场景,例如太阳刚刚升起或下山时的场景,亮度较高的区域可能并不属于无遮挡物体。这时需要根据场景信息进行精化,例如对于太阳刚升起时的场景,可以选择亮度较高的像素点的周围区域进行大气光值的估计。
3、考虑大气光值的上限:在实际图像中,大气光值往往受到限制,因此需要考虑大气光值的上限。例如在自然场景中,大气光值通常不会超过255。
综上,大气光值估计的主要步骤是选择暗通道图像中亮度最高的像素点,并结合场景信息和大气光值的上限进行精化。
3.2 算法流程
基于暗通道先验理论的图像去雾算法流程如下:
1、对有雾图像进行预处理,包括去噪、颜色校正等。
2、暗通道先验理论估计图像的透射率,得到透射率图像。
3、通过透射率图像估计图像中的大气光值。
4、根据大气光值和透射率图像去除图像中的雾霾。
5、对去雾后的图像进行颜色校正、锐化等后处理。
具体实现上,还需要对算法的各个步骤进行参数调节和优化,以得到更好的去雾效果。用流程图表达出图像去雾流程如图3-5所示。

图3-5 算法流程图
3.3仿真验证及优缺点分析
为了验证He算法的有效性,需要进行仿真实验。本文所用的仿真实验环境为MATLAB2016a,计算机CPU主频为3.2GHz,内存容量为16.00GB。
图3-6展示了原始有雾图像以及使用暗通道先验理论进行去雾操作后的复原无雾图像,其中包括根据粗估透射率和优化后透射率得到的复原无雾图像。从图3-6中可以看出,根据粗估透射率图复原的无雾图像存在明显的块效应,且在景物与天空或其他边缘部分会出现带状效应。使用软抠图算法优化透射率后,复原的无雾图像未出现上述现象,且雾气浓度下降,清晰度得到明显提升,场景中的物体更容易识别,图像整体质量得到了大幅度提升。

(a)有雾图像1 (b)复原无雾图像1

(a)有雾图像2 (b)复原无雾图像2

(a)有雾图像3 (b)复原无雾图像3
He提出的暗通道先验理论具有理论简单、易于实现和复原效果较好等优点,但也存在一些缺点。
(1) 暗通道先验理论在天空区域不适用。有些图像天空区域面积较大且亮度值较高,此区域并不满足暗通道先验理论,应用暗通道先验理论进行透射率估计时会低估透射率,导致复原图像色彩失真。
(2) 在优化透射率时,虽然软抠图算法效果较好,但涉及大量的拉普拉斯矩阵运算和求解,占用较高的计算机内存,运算速度缓慢,影响算法的实用价值。
(3) 整个算法流程较复杂,特别是对于复杂图像或视频文件的去雾,算法执行速度较低,需要提高运行速度以满足对实时性要求较高的系统应用,并提高去雾算法的实用价值。
3.4本章小结
接着,结合实例详细介绍了基于暗通道先验理论的图像去雾算法流程,包括粗估透射率、软抠图优化透射率和去雾处理三个主要步骤。最后,对该算法的优缺点进行了分析,指出了暗通道先验理论在天空区域、优化透射率和算法流程复杂度等方面的不足之处,同时也指出了该算法在去雾效果、算法实现等方面的优点。本章的主要贡献是介绍了一种基于暗通道先验理论的图像去雾算法,并通过实例说明了其实现流程及优缺点。该算法在实际应用中可以有效地去除图像中的雾气,提高图像质量,具有一定的实用价值。

4基于暗通道理图像去雾系统设计
4.1有雾天气下视觉检测现状与问题
4.1.1天空区域失真现象产生的原因分析
在图像去雾中,天空区域的失真现象通常是由于大气散射模型的不准确性以及透射率估计算法的局限性导致的。首先,大气散射模型假设光线在大气中的传播符合一定的物理规律,但实际大气的复杂性和不均匀性可能导致模型的失真。其次,透射率估计算法通常基于暗通道先验理论,即假设图像中至少存在一个像素点在没有雾的情况下亮度非常低,从而估计该像素点的透射率。然而,在天空区域中,亮度值可能非常高,导致透射率被低估,从而影响透射率图的精度。这些因素共同作用导致了天空区域失真现象的产生。

图4-1去雾图像失真现象
4.1.2形态学图像处理
形态学图像处理是一种基于形态学数学理论的图像处理方法,主要用于图像的分割、特征提取、形态学滤波等。形态学图像处理主要基于形态学运算,包括膨胀、腐蚀、开运算、闭运算等,这些运算可以改变图像的形态,从而实现对图像的处理。
形态学图像处理主要应用于二值图像或灰度图像,可以用于去除图像中的噪声、裁剪图像边缘、提取图像中的特征等。形态学图像处理的基本思想是将结构元素应用于图像中的每一个像素,根据结构元素和像素值之间的关系进行形态学运算。其中,结构元素是一个小的形状,可以是线段、矩形、圆等。形态学运算的结果取决于结构元素的大小和形状,可以通过调整结构元素的大小和形状来改变形态学运算的效果。
形态学图像处理在实际应用中有广泛的应用,如图像分割、边缘检测、文本识别、医学影像分析等领域。它不仅可以用于图像处理,还可以用于信号处理、音频处理等领域,具有较高的实用价值。
4.1.3天空区域透射率优化
天空区域在大气散射模型中具有特殊性质,其透射率应该比非天空区域的透射率更接近于1。因此,在进行透射率优化时,需要特别考虑天空区域的处理。以下是一些常见的天空区域透射率优化方法:
固定阈值法:将图像的亮度值进行统计,找到一个合适的阈值,将亮度值高于该阈值的像素点都视为天空区域,然后将这些像素点的透射率设置为1。
自适应阈值法:根据图像的亮度值分布情况,自动计算出一个合适的阈值,将亮度值高于该阈值的像素点视为天空区域,并将这些像素点的透射率设置为1。
基于颜色分布的方法:对图像进行颜色分布分析,将颜色与天空区域的分布规律进行比对,然后将符合天空区域颜色分布规律的像素点的透射率设置为1。
基于区域分割的方法:将图像进行区域分割,将区域中与天空区域特征相似的像素点的透射率设置为1。
这些方法都可以有效地提高天空区域的复原效果,但是也存在一定的局限性,需要根据具体情况进行选择和调整。
4.2大气光值估计
准确的大气光值A对于去雾算法的效果有着至关重要的作用。常见的大气光值计算方法是选取有雾图像中像素点亮度最高的点的亮度值作为A值,但是这种方法在有其他光源或亮度值较高的物体存在的图像中不适用。因此,本文提出了一种通用的大气光值计算方法,适用于包含大面积天空区域的有雾图像,也适用于包含很小天空区域甚至不含天空区域的有雾图像。该方法首先检测天空区域像素占整个图像的比例,若比例大于5%,则计算天空部位像素平均值作为A值;若比例小于5%,则采用He提出的方法计算A值。这种方法能够更准确地估计A值,提高去雾算法的效果和应用范围。
4.3系统算法流程框图设计
雾算法的流程:
1、对有雾图像进行暗通道先验理论求解,得到估计的全局透射率。
2、对天空区域进行透射率优化,根据天空区域像素占整个图像的比例选择计算A值的方法。
3、利用估计的透射率和A值对原始有雾图像进行去雾操作,得到初步的无雾图像。
4、对初步的无雾图像进行细节增强,使用Retinex算法或者Retinex-based方法增强图像细节,使得无雾图像更加清晰自然。
5、对细节增强后的无雾图像进行颜色校正,提升图像的色彩饱和度和色彩平衡性。
这是一个简要的流程概述,具体实现中还需要一些细节处理和参数调节,其中流程图如图4-2所示。

图4-2图像去雾图像流程图

4.4暗通道理图像去雾系统仿真实验结果
本章针对He算法存在的问题,进行了进一步的发展和改进。我们选取了包含城市建筑物和自然景观的有雾图像作为实验对象,并与He算法在主观评价和客观评价两方面进行了比较和分析,以进一步明确本文算法的优缺点。实验环境采用MATLAB2016a,CPU主频3.20GHz,内存大小为16.00GB。在暗通道先验理论中,滤波窗口大小为15*15。仿真实验的结果如下所示:

(a)有雾图像1 (b)He算法

©优化后算法
图4-2仿真测试结果
经过上述实验结果的分析,可以得出结论:本文针对He算法存在的问题进行了改进,成功解决了天空区域颜色失真的问题,并且显著提高了算法的运行效率。该算法去雾效果明显,使得恢复的图像对比度大幅提高,亮度适中,色彩丰富,边缘及细节信息更加丰富,场景中的物体更容易识别,整体质量得到了大幅提升。
4.5本章小结
本章提出了一种基于暗通道先验理论的改进图像去雾算法,针对暗通道去雾算法的不足进行了改进。本文算法结合模糊集理论和形态学图像处理,提出了一种天空区域分割算法,解决了天空区域失真的问题,并对天空区域的透射率进行了优化。本章算法还提出了一种新的大气光值估计方法,通过引导滤波对粗估透射率进行了优化处理。仿真实验结果表明,本文算法改善了暗通道去雾算法的缺点,去雾效果得到提升,图像质量得到提高。

5 结 论
本文主要研究了雾天图像去雾算法,探索了更加快速有效的去雾算法。在介绍研究背景、意义及现状的基础上,对国内外主流去雾算法的研究内容及优缺点进行了分析。针对雾霾天气的形成原理及其对图像降质的影响,引入了大气散射模型作为雾天图像退化模型,并详细探讨了该模型。本文还引入了图像质量评价方法对去雾图像进行评价。
在基于暗通道先验理论的图像去雾算法方面,本文提出了一种改进算法,包括暗通道先验理论、透射率估计、软抠图优化透射率和大气光值估计。针对天空区域失真现象,本文提出了一种基于模糊集理论的天空区域分割算法,并结合形态学图像处理将有雾图像分割为天空区域及非天空区域,并对天空区域的透射率进行优化。本文还提出采用引导滤波对粗估透射率进行优化,解决软抠图算法优化粗估透射率耗时过长的问题,然后对大气光值进行重新估计。
本文的实验结果表明,本文算法改善了暗通道去雾算法的缺点,去雾效果得到提升,图像质量得到提高。本文的研究成果可以为计算机视觉和图像处理领域的研究提供参考,也可以为雾天图像的实际应用提供有效的技术支持。

参考文献
[1]刘纪伟,王晓东,李云辉.基于矩阵复原和暗通道理论的单色遥感图像去雾算法[J].液晶与显示,2023,38(02):225-235.
[2]黄淑英,夏钰锟,杨勇,万伟国,邱根莹.基于暗通道先验引导的图像去雾网络[J/OL].北京航空航天大学学报,2023,2(23):1-12.
[3]王效灵,胡志杰,徐帅帅,黄浩如.改进暗通道先验和策略性融合的图像去雾算法[J/OL].计算机工程,2023,2(23):1-8.
[4]李玉鑫,于会山,梁天全.融合暗通道与MSRCR算法的图像去雾研究[J].现代计算机,2022,28(22):24-30.
[5]温立民,巨永锋,王会峰,徐娟.基于B-样条曲线暗通道的图像去雾算法[J].计算机工程,2022,48(11):215-223.
[6]石冬阳,张俊林,贾兵,聂玲,杨慧敏.基于改进暗通道先验的车牌图像去雾方法研究[J].电子技术应用,2022,48(11):13-18.
[7]仲会娟,廖一鹏.基于改进暗通道和自适应容差的图像去雾算法[J].液晶与显示,2022,37(11):1488-1497.
[8]张成,潘明阳,高翊然,王泾阳,张若澜,李邵喜.融合暗通道先验与循环生成对抗网络的航海图像去雾模型[J].大连海事大学学报,2022,48(04):84-93.
[9]廖员,王成辉.基于暗通道先验与梯度导向滤波的图像去雾算法[J].电脑知识与技术,2022,18(30):27-32.
[10]撤回张成,潘明阳,高翊然,王泾阳,张若澜,李邵喜.融合暗通道先验与循环生成对抗网络的航海图像去雾模型[J/OL].大连海事大学学报:1-11[2023-02-23].
[11]王昊昱,何明枢.基于改进暗通道算法的红外图像去雾[J].红外技术,2022,44(08):875-881.
[12]程德强,尤杨杨,寇旗旗,徐进洋.融合暗通道先验损失的生成对抗网络用于单幅图像去雾[J].光电工程,2022,49(07):58-73.
[13]谢斌,杨俊霞,吕志铭,沈建豪.区域透射率融合的暗通道图像去雾方法[J/OL].激光与光电子学进展:1-13[2023-02-23].
[14]林森,孙彭辉.改进暗通道窗口与透射率修正的图像去雾[J].电光与控制,2022,29(11):55-60+124.
[15]张雪,王峰,赵佳.基于暗通道先验的单幅图像去雾改进算法[J].阜阳师范大学学报(自然科学版),2022,39(02):69-75.
[16]孙希延,陶堃,黄建华,时慧恩.基于暗通道的自适应图像去雾算法[J].计算机仿真,2022,39(06):359-364.
[17]罗杰. 基于多特征融合的端到端图像去雾算法研究[D].西北大学,2022.
[18]薛奉金. 基于暗通道先验与神经网络的图像去雾研究[D].兰州交通大学,2022.
[19]李思濛. 基于天空分割和超像素优化的图像去雾研究[D].兰州交通大学,2022.
[20]韩昊男. 基于双约束的单帧和序列图像去雾关键技术[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2022.
[21]Anan S , Khan M I , Kowsar M , et al. Image Defogging Framework Using Segmentation and the Dark Channel Prior[J]. Entropy, 2021, 23(3):285.
[22]Ma R Q , Shen X R , Zhang S J . Single Image Defogging Algorithm Based on Conditional Generative Adversarial Network[J]. Mathematical Problems in Engineering, 2020, 2(1):28-30.
[23]Kumar R , Balasubramanian R , Kaushik B K . Efficient Method and Architecture for Real-Time Video Defogging[J]. IEEE Transactions on Intelligent Transportation Systems, 22.
[24]Yang Y , Long W , Li Y , et al. Image defogging based on amended dark channel prior and 4-directional L1 regularisation[J]. IET Image Processing, 2021, 15(11).
[25]Zhou Z , Pan Z . Real-time defogging hardware accelerator based on improved dark channel prior and adaptive guided filtering[J]. Journal of electronic imaging, 2022(1):31.
[26] Kang B . Haziness Degree Evaluator: A Knowledge-Driven Approach for Haze Density Estimation[J]. Sensors, 2021, 21.

致 谢
转瞬间,大学四年的生活就要说再见了,昨日仿佛还在课堂给我们上课的老师,今日就要步入社会工作了,在学校里不仅仅是学习到了知识,还有个人多方面综合素质的不断提高。首先感谢老师对我的悉心教导,由于是第一次感受这种大型的论文写作,总是感觉自己手忙脚乱,准备不充分,在老师的认真和耐心地帮助和指点下,我完成了人生中的第一篇论文,从课题的选择到相关文献的收集,其中所包含的核心和重点,如何查找收集资料,如何实现仿真效果,都离不开老师的细心指导,没有老师的帮助,我可能在很长的一段时间内都找不到解决问题的方法,老师负责任的态度是我认真完成这篇论文的精神支柱,所以在这里我要特别感谢的是我的林益平指导老师。我并不认为这次论文的编写体现的只是大学四年的专业水平,而更多的是让我们学到人生道理,也是对我们今后人生的生活和工作都是重要的一课。
同时我要感谢我同班的同学们,感谢我宿舍的舍友们,感谢所有爱我的人,感谢我的师兄师姐们,感谢你们在我遇到困难给我的支持、鼓励和肯定,感谢你们在思路还有写作技巧上给了我很多有用的建议和意见,在此,我诚挚地感谢你们一直以来对我的帮助。其实我最要感谢的是我的爸爸和妈妈,父母之爱子,则为之计深远,感谢我的父母对我二十余载无微不至的照顾和支持;养育之恩,无以回报,唯有不断努力,成为他们的骄傲。最后我要感谢我自己的坚持不懈的努力还有坚定不移的信念,不言弃,不放弃,坚持就是胜利。

附录:
附录A 毕业设计(论文)知识产权声明
毕业设计(论文)知识产权声明

本人完全了解西安工业大学北方信息工程学院有关保护知识产权的规定,即:本科学生在校攻读学士学位期间毕业设计(论文)工作的知识产权属于西安工业大学北方信息工程学院。本人保证毕业离校后,使用毕业设计(论文)工作成果或用毕业设计(论文)工作成果发表论文时署名单位仍然为西安工业大学北方信息工程学院。学校有权保留送交的毕业设计(论文)的原文或复印件,允许毕业设计(论文)被查阅和借阅;学校可以公布毕业设计(论文)的全部或部分内容,可以采用影印、缩印或其他复制手段保存毕业设计(论文)。
(保密的毕业设计(论文)在解密后应遵守此规定)

毕业设计(论文)作者签名:

指导教师签名:

日期:

附录B 毕业设计(论文)独创性声明
毕业设计(论文)独创性声明

秉承学校严谨的学风与优良的科学道德,本人声明所呈交的毕业设计(论文)是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,毕业设计(论文)中不包含其他人已经发表或撰写过的成果,不包含他人已申请学位或其他用途使用过的成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了致谢。
毕业设计(论文)与资料若有不实之处,本人承担一切相关责任。

毕业设计(论文)作者签名:

指导教师签名:

日期:

示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


提示:以下是本篇文章正文内容,下面案例可供参考

一、pandas是什么?

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、使用步骤

1.引入库

代码如下(示例):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.读入数据

代码如下(示例):

data = pd.read_csv(
    'https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。


总结

提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值