题目列表:
- 隔行变色
- 立方尾不变
- 无穷分数
- 循环节长度
- 格子中输出
- 奇妙的数字
- 加法变乘法
- 移动距离
- 打印大X
- 垒骰子(未做)
一、隔行变色
Answer: 15
Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的样式。
小明设计的样式为:第1行蓝色,第2行白色,第3行蓝色,第4行白色,…
现在小明想知道,从第21行到第50行一共包含了多少个蓝色的行。
请你直接提交这个整数,千万不要填写任何多余的内容。
这题直接看代码吧……
代码块:
public class _1隔行变色 {
public static void main(String[] args){
int cnt = 0;
for(int i = 21; i <= 50; i++){
if(i%2==0){
cnt++;
}
}
System.out.println(cnt);
}
}
二、立方尾不变
Answer:36
有些数字的立方的末尾正好是该数字本身。
比如:1,4,5,6,9,24,25,…
请你计算一下,在10000以内的数字中(指该数字,并非它立方后的数值),符合这个特征的正整数一共有多少个。
请提交该整数,不要填写任何多余的内容。
代码块(解法一):
public class _2立方尾不变 {
public static void main(String[] args){
int cnt = 0;
for(long i = 1; i < 10000; i++){
if(i<10){
if(i*i*i%10 == i)cnt++;
}else if(i<100){
if(i*i*i%100 == i)cnt++;
}else if(i<1000){
if(i*i*i%1000 == i)cnt++;
}else if(i<10000){
if(i*i*i%10000 == i)cnt++;
}
}
System.out.println(cnt);
}
}
代码块(解法二):
public class C2 {
public static void main(String[]args) {
int ans = 0;
for(int i = 1; i <= 10000; i++) {
int pin = i*i;
if((pin+"").length()>(i+"").length()) {
pin = Integer.valueOf((pin+"").substring((pin+"").length()-(i+"").length(), (pin+"").length()));
}
int li = pin*i;
if((li+"").length()>(i+"").length()) {
li = Integer.valueOf((li+"").substring((li+"").length()-(i+"").length(), (li+"").length()));
}
if(li==i) {
// System.out.println(i);
ans++;
}
}
System.out.println(ans);
}
}
三、无穷分数
Answer:0.58198
无穷的分数,有时会趋向于固定的数字。
请计算【图1.jpg】所示的无穷分数,要求四舍五入,精确到小数点后5位,小数位不足的补0。
请填写该浮点数,不能填写任何多余的内容。
思路:由后向前思考
数字大小虽然不同,但是经过题目描述的操作后,都会趋向于一个答案
代码块:
import java.math.BigDecimal;
import java.math.BigInteger;
public class _3无穷分数 {
public static void main(String[] args){
BigDecimal fn = new BigDecimal("1");//fn = 1;
//System.out.println(fn);
for(int i = 100; i >= 1; i--){
//bd = i(i转化为BigInteger在转化为BigDecimal)
BigDecimal bd = new BigDecimal(BigInteger.valueOf(i));
/*
fn = bd / (fn+bd)
如下:
fn = 100/101
fn = 99/(99+(100/101))
*/
fn = bd.divide(fn.add(bd),5,BigDecimal.ROUND_HALF_UP);//四舍五入
}
//System.out.println(fn.toPlainString());//BigDecimal转化为字符串
System.out.println(fn);
}
}
解法二:
public class C3 {
public static void main(String[]args) {
f(1000);
System.out.printf("%.7f",(1/d));
}
static double d;
static double t = 1002;
static void f(int n) {
if(n==0)return;
d = n + (n+1)/t;
t = d;
f(n-1);
}
}
四、循环节长度
Answer:v.size()-v.indexOf(n)
两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。
比如,11/13=6=>0.846153846153… 其循环节为[846153] 共有6位。
下面的方法,可以求出循环节的长度。
请仔细阅读代码,并填写划线部分缺少的代码。
import java.util.Vector;
public class _4循环节长度 {
public static void main(String[] args){
//System.out.println(50%13);
System.out.println(f(11,13));
}
public static int f(int n, int m)//11/13
{
n = n % m;
Vector v = new Vector();
for(;;)
{
//比如,11/13=6=>0.846153846153..... 其循环节为[846153] 共有6位。
v.add(n);//11 6 8 2 7 5 11
n *= 10;
n = n % m;
if(n==0) return 0;
if(v.indexOf(n)>=0){//判断n在v中是否存在
return v.size()-v.indexOf(n);
// _________________________________ ; //填空
}
}
}
}
五、格子中输出
Answer:"%"+(width-2-s.length())/2+“s%s”+"%"+(width-2-s.length())/2+“s”;
stringInGrid方法会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。
下面的程序实现这个逻辑,请填写划线部分缺少的代码。
public static void stringInGrid(int width, int height, String s)
{
if(s.length()>width-2) s = s.substring(0,width-2);
System.out.print("+");
for(int i=0;i<width-2;i++) System.out.print("-");
System.out.println("+");
for(int k=1; k<(height-1)/2;k++){
System.out.print("|");
for(int i=0;i<width-2;i++) System.out.print(" ");
System.out.println("|");
}
System.out.print("|");
String ff = _______________________________________________________; //填空
System.out.print(String.format(ff,"",s,""));
System.out.println("|");
for(int k=(height-1)/2+1; k<height-1; k++){
System.out.print("|");
for(int i=0;i<width-2;i++) System.out.print(" ");
System.out.println("|");
}
System.out.print("+");
for(int i=0;i<width-2;i++) System.out.print("-");
System.out.println("+");
}
对于题目中数据,应该输出:
±-----------------+
| |
| abcd1234 |
| |
| |
±-----------------+
(如果出现对齐问题,参看【图1.jpg】)
六、奇妙的数字
nswer: 69
小明发现了一个奇妙的数字。它的平方和立方正好把0~9的10个数字每个用且只用了一次。
你能猜出这个数字是多少吗?
请填写该数字,不要填写任何多余的内容。
思路:
从1开始判断,把每位数字的平方和立方都放进一个字符串中,判断字符串转化为字符数组,并使用set方法进行判断
代码块:
import java.util.HashSet;
import java.util.Set;
public class _6奇妙的数字 {
public static void main(String[] args){
for(int i = 1; i < 1000000; i++){
String s = (i*i)+""+(i*i*i);
if(check(s)){
System.out.println(i+" "+(i*i)+" "+(i*i*i));
}
}
}
//使用set去重
static boolean check(String s){
if(s.length() != 10)return false;
Set<Character> set = new HashSet<Character>();
for(int i = 0; i < s.length(); i++){
set.add(s.charAt(i));
}
return set.size() == 10;
}
}
七、加法变乘法
Answer: 16
我们都知道:1+2+3+ … + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+…+1011+12+…+2728+29+…+49 = 2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
注意:需要你提交的是一个整数,不要填写任何多余的内容。
思路:
两个不相邻的加号变乘号,使得结果为2015,得到:
1225 减去两个不相邻的加号两边的四个数在加上它们的乘积,最后会等于2015。
假设这四个数字分别为:a1, a2, b1, b2 那么:
1225 - (a1+a2) - (b1+b2) + a1×a2+b1×b2 = 2015
通过上面的等式得出下面的代码:
代码块:
public class _7加法变乘法 {
public static void main(String[] args){
int sum;
for(int i = 1; i < 50; i++){//10 11
for(int j = i; j < 50; j++){//27 28
sum = 1225 - (i+i+1) - (j+j+1);//1225 - 21 - 55 = 1149
if(2015 == sum + (i*(i+1) + (j*(j+1)))){//1149+110+756=1403
System.out.println(i+" "+j+"!");
}
}
}
}
}
八、移动距离
移动距离
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3…
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 …
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入为3个整数w m n,空格分开,都在1到10000范围内
要求输出一个整数,表示m n 两楼间最短移动距离。
例如:
用户输入:
6 8 2
则,程序应该输出:
4
再例如:
用户输入:
4 7 20
则,程序应该输出:
5
解题过程:
所以,解决这道题,只需高中数学知识就可以了~
代码块:
import java.util.Scanner;
public class _8移动距离 {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
//接收用户输入的数字
int w = sc.nextInt();
int m = sc.nextInt();
int n = sc.nextInt();
int max = Math.max(w, Math.max(m, n));
//根据题意将1~max赋值给二维数组a
int k = 1;
int[][]a = new int[max][w];
for(int i = 0; i < max; i++){
if(i % 2 != 0){
for(int j = w-1; j >= 0; j--){
a[i][j] = k;
k++;
}
}else if(i%2==0){
for(int j = 0; j < w; j++){
a[i][j] = k;
k++;
}
}
}
//从数组a中找到n和m,并算出对应的行和列
int x1 = 0, y1 = 0;
int x2 = 0, y2 = 0;
for(int i = 0; i < max; i++){
for(int j = 0; j < w; j++){
if(a[i][j] == m){
x1 = i;
y1 = j;
}
if(a[i][j] == n){
x2 = i;
y2 = j;
}
}
}
//通过两点之间的距离关系,打印答案
System.out.println(Math.abs(x1-x2)+Math.abs(y1-y2));
}
}
九、打印大X
小明希望用星号拼凑,打印出一个大X,他要求能够控制笔画的宽度和整个字的高度。
为了便于比对空格,所有的空白位置都以句点符来代替。
要求输入两个整数m n,表示笔的宽度,X的高度。用空格分开(0<m<n, 3<n<1000, 保证n是奇数)
要求输出一个大X
例如,用户输入:
3 9(w = 11)
程序应该输出:
(如有对齐问题,参看【图1.jpg】)
再例如,用户输入:
4 21(w = 24)
程序应该输出
(如有对齐问题,参看【图2.jpg】)
思路:
这题与打印十字架那道题相类似,都是可以使用递归分别打印;
第一次循环打印四个角,以后每次循环一次都向内打印,一次类推
如果没看懂,可以查看如下代码:
代码块:
解法一:
import java.util.Scanner;
public class _9打印大X {
static char[][]a;
static int m = 0;
static int h = 0;
static int w = 0;
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
m = sc.nextInt();//m:表示笔的宽度
h = sc.nextInt();//h:表示x的高度;宽度=h-m-1
w = h+m-1;
a = new char[h][w];
for(int i = 0; i < h; i++){
for(int j = 0; j < w; j++){
a[i][j] = '.';
}
}
int start = 0;
f(start);
for(int i = 0; i < h; i++){
for(int j = 0; j < w; j++){
System.out.print(a[i][j]);
}
System.out.println();
}
}
static void f(int start){
//打印第一行和最后一行
for(int i = start; i < start+m; i++){
if(start >= w/2)return;
a[start][i] = '*';//上左
a[h-1-start][i] = '*';//下左
a[start][w-1-i] = '*';//上右
a[h-1-start][w-1-i] = '*';//下右
f(start+1);
}
}
}
解法二:
import java.util.Scanner;
public class _9打印大XP {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();//m:表示笔的宽度
int h = sc.nextInt();//h:表示x的高度;宽度=h-m-1
int w = h+m-1;//宽
//将.赋值到数组a中
char[][]a = new char[h][w];
for(int i = 0; i < h; i++){
for(int j = 0; j < w; j++){
a[i][j] = '.';
}
}
//自左上到右下
for(int i = 0; i < h; i++){
for(int j = i; j < i+m; j++){
a[i][j] = '*';
}
}
//自右上到左下
for(int i = 0; i < h; i++){
for(int j = w-1-i; j >= w-(i+m); j--){
a[i][j] = '*';
}
}
for(int i = 0; i < h; i++){
for(int j = 0; j < w; j++){
System.out.print(a[i][j]);
}
System.out.println();
}
}
}
十、垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模 10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 不能紧贴在一起。
「输出格式」
一行一个数,表示答案模 10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.7及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。