这个题目怎么去想呢,我们先构造前缀和,一般思路肯定是用两层循环,但是一定会超时,我们的数据范围是 1e5,那我们必须找到复杂度为 nlog n 的才行,所以我们可以考虑每次计算以 i 结尾的子数组的数量,我们只要计算 i 之前的前缀和在 d[i] - upper 和 d[i] - lower 之间的数量,这就需要我们离散化我们的数据
class BIT {
private:
vector<int> tree;
int n;
public:
BIT(int _n): n(_n), tree(_n + 1) {}
static constexpr int lowbit(int x) {
return x & (-x);
}
void update(int x, int d) {
while (x <= n) {
tree[x] += d;
x += lowbit(x);
}
}
int query(int x) const {
int ans = 0;
while (x) {
ans += tree[x];
x -= lowbit(x);
}
return ans;
}
};
class Solution {
public:
int countRangeSum(vector<int>& nums, int lower, int upper) {
long long sum = 0;
vector<long long> preSum = {0};
for (int v: nums) {
sum += v;
preSum.push_back(sum);
}
set<long long> allNumbers;
for (long long x: preSum) {
allNumbers.insert(x);
allNumbers.insert(x - lower);
allNumbers.insert(x - upper);
}
// 利用哈希表进行离散化
unordered_map<long long, int> values;
int idx = 0;
for (long long x: allNumbers) {
values[x] = idx;
idx++;
}
int ret = 0;
BIT bit(values.size());
for (int i = 0; i < preSum.size(); i++) {
int left = values[preSum[i] - upper], right = values[preSum[i] - lower];
ret += bit.query(right + 1) - bit.query(left);
bit.update(values[preSum[i]] + 1, 1);
}
return ret;
}
};