一,java算法库总结表格
库/框架 | 丰富程度 | 支持的算法 | 特点 | CPU/GPU | 学习成本 | 依赖冗余 | 行业应用 | 优点 | 缺点 | 发展前景 |
---|---|---|---|---|---|---|---|---|---|---|
Mahout | 中等 | 推荐、聚类、分类等 | 分布式机器学习算法 | 可在CPU上运行,不支持GPU加速 | 中等 | 依赖较少 | 推荐系统、大数据分析等领域 | 提供了分布式机器学习算法和工具 | 不支持深度学习算法 | 发展较慢,社区活跃度相对较低 |
Hadoop MLlib | 高 | 分类、回归、聚类等 | 分布式机器学习算法 | 可在CPU上运行,不支持GPU加速 | 中等 | 依赖较少 | 大数据分析等领域 | 提供了丰富的分布式机器学习算法 | 不支持深度学习算法 | 发展前景看好 |
FlinkML | 高 | 分类、回归、聚类等 | 流式和批量机器学习算法 | 可在CPU上运行,不支持GPU加速 | 中等 | 依赖较少 | 金融、电信等领域 | 流式计算能力强 | 不支持深度学习算法 | 发展前景看好 |
Colt | 高 | 数值计算、线性代数等 | 提供各种数学、统计和矩阵运算功能 | 可在CPU上运行,不支持GPU加速 | 简单 | 依赖较少 | 科学计算、统计分析等领域 | 提供了丰富的数学和统计算法,性能优越 | 不支持机器学习和深度学习算法 | 稳定发展,持续维护 |
Coffee | 高 | 深度学习 | 提供了深度学习算法和工具 | 可在CPU上运行,不支持GPU加速 | 高 | 依赖较少 | 图像识别、自然语言处理等领域 | 支持多种深度学习算法,使用方便,支持Keras模型的迁移 | 社区活跃度相对较低 | 新兴框架,发展前景未知 |
Tensor Flow4j | 高 | 深度学习 | 提供了深度学习算法和工具 | 可在CPU和GPU上运行 | 较高 | 依赖较少 | 图像识别、自然语言处理等领域 | 强大的生态系统,广泛应用 | 对于初学者来说较为复杂 | 以人工智能为核心的发展前景广阔 |
DL4J | 高 | 深度学习 | 提供了深度学习算法和工具 | 可在CPU和GPU上运行 | 较高 | 需要安装依赖库 | 图像识别、自然语言处理等领域 | 强大的生态系统,广泛应用 | 对于初学者来说较为复杂 | 增长迅速,前景看好 |
Apache Commons Math | 中等 | 数值分析、线性代数、统计等 | 提供各种数学算法和工具,包括插值、积分、矩阵运算等 | 可在CPU上运行,不支持GPU加速 | 容易 | 依赖冗余 | 科学计算、数据分析、金融等领域 | 提供了广泛的数学算法和工具,文档丰富 | 不支持机器学习和深度学习算法 | 稳定发展,持续维护 |
Smile | 高 | 分类、回归、聚类等 | 提供各种机器学习算法 | 可在CPU上运行,不支持GPU加速 | 简单 | 依赖较少 | 数据挖掘、模式识别等领域 | 简洁易用,性能较好 | 不支持深度学习算法 | 稳定发展,社区活跃 |
Weka | 高 | 机器学习 | 提供各种机器学习算法,包括分类、回归、聚类等 | 可在CPU上运行,不支持GPU加速 | 中等 | 依赖冗余 | 数据挖掘、模式识别等领域 | 提供了丰富的机器学习算法和工具,易于使用 | 不支持深度学习算法 | 成熟稳定,广泛应用 |
H2O | 高 | 机器学习 | 提供了丰富的机器学习算法和自动化特征工程 | 可在CPU上运行,不支持GPU加速 | 中等 | 依赖较少 | 金融、电信等领域 | 分布式处理能力强,提供了自动化特征工程的功能 | 不支持深度学习算法 | 发展前景看好 |
Deep learning4j | 高 | 深度学习 | 提供了深度学习算法和工具 | 可在CPU和GPU上运行 | 高 | 依赖冗余 | 图像识别、自然语言处理等领域 | 支持分布式训练和推理,与Hadoop、Spark等框架集成 | 对于初学者来说较为复杂 | 增长迅速,前景看 |
二,代码举例
1、Mahout 示例代码:
这段代码展示了 Mahout 库中实现基于用户的推荐的方法,使用的数据集是电影评分数据集。
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import java.io.File;
import java.io.IOException;
import java.util.List;
public class MahoutDemo {
public static void main(String[] args) throws IOException, TasteException {
DataModel model = new FileDataModel(new File("data/movies.csv"));
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(2, similarity, model);
UserBasedRecommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
List<RecommendedItem> recommendations = recommender.recommend(1, 3);
for (RecommendedItem recommendation : recommendations) {
System.out.println(recommendation);
}
}
}
2、Hadoop MLlib 示例代码:
这段代码展示了使用 Hadoop MLlib 库实现 K-Means 聚类的方法,使用的数据集是一个三维数据点的集合。
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.clustering.KMeans;
import org.apache.spark.mllib.clustering.KMeansModel;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
public class MLlibDemo {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("KMeansExample").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
// Load and parse data
String path = "data/kmeans_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<Vector> parsedData = data.map(s -> {
String[] sarray = s.split(" ");
double[] values = new double[sarray.length];
for (int i = 0; i < sarray.length; i++) {
values[i] = Double.parseDouble(sarray[i]);
}
return Vectors.dense(values);
});
parsedData.cache();
// Cluster the data into two classes using KMeans
int numClusters = 2;
int numIterations = 20;
KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);
// Evaluate clustering by computing Within Set Sum of Squared Errors
double WSSSE = clusters.computeCost(parsedData.rdd());
System.out.println("Within Set Sum of Squared Errors = " + WSSSE);
// Save and load model
clusters.save(sc.sc(), "data/KMeansModel");
KMeansModel sameModel = KMeansModel.load(sc.sc(), "data/KMeansModel");
}
}
3、FlinkML 示例代码:
这段代码展示了使用 FlinkML 库实现 K-Means 聚类的方法,使用的数据集同样是一个三维数据点的集合。
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.io.CsvReader;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.ml.clustering.KMeans;
import org.apache.flink.ml.common.LabeledVector;
import org.apache.flink.ml.math.DenseVector;
import org.apache.flink.ml.math.Vector;
public class FlinkMLDemo {
public static void main(String[] args) throws Exception {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
CsvReader csvReader = env.readCsvFile("data/kmeans_data.txt")
.fieldDelimiter(" ")
.ignoreComments("%")
.includeFields(false, false, true);
KMeans kMeans = new KMeans()
.setK(2)
.setMaxIterations(20);
LabeledVector[] points = csvReader
.map(tuple -> new Tuple2<>((double) tuple.f0, (double) tuple.f1))
.map(tuple -> new LabeledVector(tuple.f0, DenseVector.of(tuple.f1)))
.collect()
.toArray(new LabeledVector[0]);
Vector[] centers = kMeans.fit(points).centroids();
for (Vector center : centers) {
System.out.println(center);
}
}
}
4、Colt 示例代码:
这段代码展示了使用 Colt 库中的矩阵运算和向量运算功能,分别进行了两个矩阵的矩阵乘法和一个向量的平方操作。
import cern.colt.list.DoubleArrayList;
import cern.colt.list.IntArrayList;
import cern.colt.matrix.DoubleFactory2D;
import cern.colt.matrix.DoubleMatrix2D;
import cern.jet.math.Functions;
public class ColtDemo {
public static void main(String[] args) {
DoubleArrayList x = new DoubleArrayList(new double[]{1, 2, 3});
DoubleArrayList y = new DoubleArrayList(new double[]{4, 5, 6});
DoubleMatrix2D a = DoubleFactory2D.dense.make(new double[][]{{1, 2}, {3, 4}});
DoubleMatrix2D b = DoubleFactory2D.dense.make(new double[][]{{5, 6}, {7, 8}});
DoubleMatrix2D c = a.zMult(b, null);
System.out.println(c);
DoubleArrayList z = new DoubleArrayList(new double[]{1, 2, 3, 4, 5});
IntArrayList index = new IntArrayList(new int[]{0, 2, 4});
z.viewSelection(index).assign(Functions.square);
System.out.println(z);
}
}
5、Coffee 示例代码:
这段代码展示了使用 Coffee 库中的逻辑回归算法对鸢尾花数据集进行分类的方法。
import com.alibaba.alink.operator.batch.classification.LogisticRegressionTrainBatchOp;
import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp;
import com.alibaba.alink.pipeline.Pipeline;
import com.alibaba.alink.pipeline.classification.LogisticRegression;
import com.alibaba.alink.pipeline.dataproc.vector.VectorAssembler;
public class CoffeeDemo {
public static void main(String[] args) throws Exception {
CsvSourceBatchOp source = new CsvSourceBatchOp()
.setFilePath("data/iris.csv")
.setFieldDelimiter(",");
VectorAssembler assembler = new VectorAssembler()
.setSelectedCols(new String[]{"sepal_length", "sepal_width", "petal_length", "petal_width"})
.setOutputCol("features");
LogisticRegressionTrainBatchOp lr = new LogisticRegressionTrainBatchOp()
.setLabelCol("class")
.setFeatureCols("features")
.setEpsilon(0.001)
.setWithIntercept(true);
Pipeline pipeline = new Pipeline().add(assembler).add(lr);
pipeline.fit(source).transform(source).print();
}
}
6、TensorFlow4j示例代码
这段代码展示了如何使用 TensorFlow Java API 创建一个简单的计算图,并输出一个字符串常量节点的值。
import org.tensorflow.Graph;
import org.tensorflow.Session;
import org.tensorflow.Tensor;
public class TensorFlowJavaDemo {
public static void main(String[] args) {
try (Graph graph = new Graph()) {
// 创建计算图
final String value = "Hello, TensorFlow!";
try (Tensor<String> tensor = Tensor.create(value.getBytes())) {
// 在计算图中定义输入节点
graph.opBuilder("Const", "MyConst").setAttr("dtype", tensor.dataType()).setAttr("value", tensor).build();
}
// 创建会话并运行计算图
try (Session session = new Session(graph)) {
try (Tensor<?> output = session.runner().fetch("MyConst").run().get(0)) {
// 获取输出节点的值
byte[] bytes = new byte[(int) output.numBytes()];
output.copyTo(bytes);
System.out.println(new String(bytes));
}
}
}
}
}
7、DL4J 示例代码:
这段代码展示了使用 DL4J(Deeplearning4j)库实现一个简单的多层感知器(MLP)模型,对 MNIST 数据集进行手写数字分类。
import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.lossfunctions.LossFunctions;
public class DL4JDemo {
public static void main(String[] args) throws Exception {
int batchSize = 64;
int numClasses = 10;
int numEpochs = 10;
DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize, true, 12345);
DataSetIterator mnistTest = new MnistDataSetIterator(batchSize, false, 12345);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(12345)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.weightInit(WeightInit.XAVIER)
.list()
.layer(0, new DenseLayer.Builder()
.nIn(784)
.nOut(256)
.activation(Activation.RELU)
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nIn(256)
.nOut(numClasses)
.activation(Activation.SOFTMAX)
.build())
.build();
org.deeplearning4j.nn.multilayer.MultiLayerNetwork model = new org.deeplearning4j.nn.multilayer.MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(10));
for (int i = 0; i < numEpochs; i++) {
model.fit(mnistTrain);
}
org.nd4j.evaluation.classification.Evaluation evaluation = model.evaluate(mnistTest);
System.out.println(evaluation.stats());
}
}
8、Apache Commons Math 示例代码:
这段代码展示了使用 Apache Commons Math 库计算一组数据的均值、方差、最大值和中位数。
import org.apache.commons.math3.stat.StatUtils;
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
public class ApacheCommonsMathDemo {
public static void main(String[] args) {
double[] data = {1.2, 2.3, 0.8, 3.9, 2.1};
double mean = StatUtils.mean(data);
System.out.println("Mean: " + mean);
double variance = StatUtils.variance(data);
System.out.println("Variance: " + variance);
double max = StatUtils.max(data);
System.out.println("Max: " + max);
DescriptiveStatistics stats = new DescriptiveStatistics(data);
double median = stats.getPercentile(50);
System.out.println("Median: " + median);
}
}
9、Smile 示例代码:
这段代码展示了使用 Smile 库实现一个随机森林模型,对鸢尾花数据集进行分类,并对新样本进行预测。
import smile.data.AttributeDataset;
import smile.data.parser.ArffParser;
import smile.classification.RandomForest;
public class SmileDemo {
public static void main(String[] args) throws Exception {
ArffParser parser = new ArffParser();
parser.setResponseIndex(4);
AttributeDataset dataset = parser.parse("data/iris.arff");
double[][] x = dataset.toArray(new double[dataset.size()][]);
int[] y = dataset.toArray(new int[dataset.size()]);
RandomForest model = new RandomForest(x, y, 100);
int prediction = model.predict(new double[]{5.1, 3.5, 1.4, 0.2});
System.out.println("Prediction: " + prediction);
}
}
10、Weka 示例代码:
这段代码展示了使用 Weka 库实现一个线性回归模型,并对鸢尾花数据集进行建模和预测。
import weka.core.Instances;
import weka.core.converters.ConverterUtils.DataSource;
import weka.classifiers.functions.LinearRegression;
public class WekaDemo {
public static void main(String[] args) throws Exception {
DataSource source = new DataSource("data/iris.arff");
Instances dataset = source.getDataSet();
dataset.setClassIndex(dataset.numAttributes() - 1);
LinearRegression model = new LinearRegression();
model.buildClassifier(dataset);
double[] coefficients = model.coefficients();
System.out.println("Coefficients: ");
for (double coefficient : coefficients) {
System.out.println(coefficient);
}
}
}
11、H2O 示例代码:
这段代码展示了使用 H2O 库加载一个梯度提升模型(GBM),并对新样本进行二分类预测。
import hex.genmodel.MojoModel;
import hex.genmodel.easy.EasyPredictModelWrapper;
import hex.genmodel.easy.RowData;
import hex.genmodel.easy.prediction.BinomialModelPrediction;
public class H2ODemo {
public static void main(String[] args) throws Exception {
MojoModel model = MojoModel.load("data/GBM_model.zip");
EasyPredictModelWrapper wrapper = new EasyPredictModelWrapper(model);
RowData row = new RowData();
row.put("sepal_length", "5.1");
row.put("sepal_width", "3.5");
row.put("petal_length", "1.4");
row.put("petal_width", "0.2");
BinomialModelPrediction prediction = wrapper.predictBinomial(row);
System.out.println("Prediction: " + prediction.label);
}
}
12、Deeplearning4j 示例代码:
这段代码展示了使用 Deeplearning4j 库实现一个多层感知器(MLP)模型,对鸢尾花数据集进行分类,并计算模型在测试集上的评估指标。
import org.deeplearning4j.datasets.iterator.impl.IrisDataSetIterator;
import org.deeplearning4j.eval.Evaluation;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.MultipleEpochsIterator;
import org.nd4j.linalg.lossfunctions.LossFunctions;
public class Deeplearning4jDemo {
public static void main(String[] args) {
int batchSize = 30;
int numClasses = 3;
int numEpochs = 50;
int seed = 123;
DataSetIterator irisIterator = new IrisDataSetIterator(batchSize, true, seed);
DataSetIterator multipleEpochsIterator = new MultipleEpochsIterator(numEpochs, irisIterator);
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.weightInit(WeightInit.XAVIER)
.list()
.layer(0, new DenseLayer.Builder()
.nIn(4)
.nOut(10)
.activation(Activation.RELU)
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.nIn(10)
.nOut(numClasses)
.activation(Activation.SOFTMAX)
.build())
.build();
org.deeplearning4j.nn.multilayer.MultiLayerNetwork model = new org.deeplearning4j.nn.multilayer.MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(10));
model.fit(multipleEpochsIterator);
Evaluation evaluation = model.evaluate(irisIterator);
System.out.println(evaluation.stats());
}
}