什么是IP、MAC地址?图文解说它们之间的区别和联系

什么是IP?

IP地址

IP地址是每台计算机在网络中的唯一标识。采用“点分十进制”的方式来记忆IP地址。

举例:192.168.32.80 

   注意:

计算机在网络中的唯一标识肯定不是这个样子的。 所以,我们要把这个十进制的数据转换为二进制: 

11000000 10101000 00100000 01010000

IP地址的组成:

网络号+主机号段

IP地址的分类:

A:第一段表示网络号段,后三段表示主机号码。

        网络号码:256*256*256 16777216

        https://blog.csdn.net/ben0133/article/details/3860265   A类IP地址的分配情况

        第17次中国互联网络发展状况统计报告数据:

              中国大陆地区有 4 个 A 段的 IPv4 地址。

              港澳台地区都没有 A 段的 IPv4 地址。

B:前2段表示网络号段,后2段表示主机号码。

        网络号码:256*256 65536

C:前三段是网络号码,后1段表示主机号码:

        网络号码:256

IP地址划分:

A:0.0.0.0--127.255.255.255

B:128.0.0.0--191.255.255.255

C:192.0.0.0--223.255.255.255  --- 最常见的

D:保留

E:保留

常用的局域网IP:

        192.168.x.x

        10.x.x.x

端口号:

        http://localhost:8080中      8080就是端口号

        有范围的:0-65535之间。

        0-1024之间不要随意使用,因为它被保留或者被系统进程占用。

        可以通过360查看端口号。

什么是MAC地址?

首先,mac地址位于OSI七层网络协议的第二层---数据链路层。通常表示为12个16进制数,每2个16进制数之间用冒号隔开。

举例:

        08:00:20:0A:8C:6D

前6位16进制数08:00:20代表网络硬件制造商的编号,后3位16进制数0A:8C:6D代表该制造商所制造的某个网络产品(如网卡)的系列号。

可以使用命令行 :ipconfig -all 查看计算机物理地址(也就是mac地址)。

什么是IP地址和MAC地址?

IP地址和MAC地址的区别:

  • IP地址是服务商给你的,mac地址是你的网卡物理地址;
  • IP地址局域网内可以随便更改,但是mac地址一般不能更改;
  • 长度不同。IP地址为32位,MAC地址为48位;
  • 寻址协议层不同。IP地址应用于OSI第三层,即网络层,而MAC地址应用在OSI第二层,即数据链路层。

IP地址和MAC地址的关系:

首先,IP 间的通信依赖 MAC 地址。

使用 ARP 协议凭借 MAC 地址进行通信:

在网络上,通信的双方在同一局域网(LAN)内的情况是很少的,通常是经过多台计算机和网络设备中转才能连接到对方。而在进行中转时,会利用下一站中转设备的 MAC 地址来搜索下一个中转目标。这时,会采用 ARP 协议(Address Resolution Protocol)。

ARP 是一种用以解析地址的协议,根据通信方的 IP 地址就可以反查出对应的 MAC 地址。

图文形象说明:

ip和mac协同通信

流程解说:

发送端(名称为A,IP地址为IP_A,MAC地址为MAC_A)向接收端(名称B,IP地址为IP_B,MAC地址为MAC_B)发送数据。这两台主机之间不可能是直接连接起来的,因而数据包在传递时必然要经过许多中间节点(如路由器,服务器等等),我们假定在传输过程中要经过C1、C2其MAC地址分别为M1,M2)两个节点。

A在将数据包发出之前,先发送一个ARP请求,找到其要到达IP_B所必须经历的第一个中间节点C1的MAC地址M1,然后在其数据包中封装这些地址:IP_A、IP_B,MAC_A和M1。当PAC传到C1后,再由ARP根据其目的IP地址IP_B,找到其要经历的第二个中间节点C2的MAC地址M2,然后再将带有M2的数据包传送到C2。如此类推,直到最后找到带有IP地址为IP_B的B主机的地址MAC_B,最终传送给主机B。

在传输过程中,IP_A、IP_B和MAC_A不变,而中间节点的MAC地址通过ARP在不断改变(M1,M2),直至目的地址MAC_B。 

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值