import java.text.DecimalFormat;
/**
* 求可逆矩阵使用代数余子式的形式
* @author imlilu
*
*/
public class InverseMatrix {
/***
* 求行列式的算法
* @param value 需要算的行列式
* @return 计算的结果
*/
public static double mathDeterminantCalculation(double[][] value) throws Exception{
if (value.length == 1) {
//当行列式为1阶的时候就直接返回本身
return value[0][0];
}else if (value.length == 2) {
//如果行列式为二阶的时候直接进行计算
return value[0][0]*value[1][1]-value[0][1]*value[1][0];
}
//当行列式的阶数大于2时
double result = 1;
for (int i = 0; i < value.length; i++) {
//检查数组对角线位置的数值是否是0,如果是零则对该数组进行调换,查找到一行不为0的进行调换
if (value[i][i] == 0) {
value = changeDeterminantNoZero(value,i,i);
result*=-1;
}
for (int j = 0; j <i; j++) {
//让开始处理的行的首位为0处理为三角形式
//如果要处理的列为0则和自己调换一下位置,这样就省去了计算
if (value[i][j] == 0) {
continue;
}
//如果要是要处理的行是0则和上面的一行进行调换
if (value[j][j]==0) {
double[] temp = value[i];
value[i] = value[i-1];
value[i-1] = temp;
result*=-1;
continue;
}
double ratio = -(value[i][j]/value[j][j]);
value[i] = addValue(value[i],value[j],ratio);
}
}
DecimalFormat df = new DecimalFormat(".##");
return Double.parseDouble(df.format(mathValue(value,result)));
}
/**
* 计算行列式的结果
* @param value
* @return
*/
public static double mathValue(double[][] value,double result) throws Exception{
for (int i = 0; i < value.length; i++) {
//如果对角线上有一个值为0则全部为0,直接返回结果
if (value[i][i]==0) {
return 0;
}
result *= value[i][i];
}
return result;
}
/***
* 将i行之前的每一行乘以一个系数,使得从i行的第i列之前的数字置换为0
* @param currentRow 当前要处理的行
* @param frontRow i行之前的遍历的行
* @param ratio 要乘以的系数
* @return 将i行i列之前数字置换为0后的新的行
*/
public static double[] addValue(double[] currentRow,double[] frontRow, double ratio)throws Exception{
for (int i = 0; i < currentRow.length; i++) {
currentRow[i] += frontRow[i]*ratio;
}
return currentRow;
}
/**
* 指定列的位置是否为0,查找第一个不为0的位置的行进行位置调换,如果没有则返回原来的值
* @param determinant 需要处理的行列式
* @param line 要调换的行
* @param row 要判断的列
*/
public static double[][] changeDeterminantNoZero(double[][] determinant,int line,int row)throws Exception{
for (int j = line; j < determinant.length; j++) {
//进行行调换
if (determinant[j][row] != 0) {
double[] temp = determinant[line];
determinant[line] = determinant[j];
determinant[j] = temp;
return determinant;
}
}
return determinant;
}
/**
* 求传入的矩阵的逆矩阵
* @param value 需要转换的矩阵
* @return 逆矩阵
* @throws Exception
*/
public static double[][] getInverseMatrix(double[][] value,double result) throws Exception{
double[][] transferMatrix = new double[value.length][value[0].length];
//计算代数余子式,并赋值给|A|
for (int i = 0; i < value.length; i++) {
for (int j = 0; j < value[i].length; j++) {
transferMatrix[j][i] = mathDeterminantCalculation(getNewMatrix(i, j, value));
if ((i+j)%2!=0) {
transferMatrix[j][i] = -transferMatrix[j][i];
}
transferMatrix[j][i] /= result;
DecimalFormat df = new DecimalFormat(".##");
transferMatrix[j][i] = Double.parseDouble(df.format(transferMatrix[j][i]));
}
}
return transferMatrix;
}
/**
* 转换为代数余子式
* @param row 行
* @param line 列
* @param matrix 要转换的矩阵
* @return 转换的代数余子式
*/
public static double[][] getNewMatrix(int row,int line,double[][] matrix){
double[][] newMatrix = new double[matrix.length-1][matrix[0].length-1];
int rowNum = 0,lineNum = 0;
for (int i = 0; i < matrix.length; i++) {
if (i == row){
continue;
}
for (int j = 0; j < matrix[i].length; j++) {
if (j == line) {
continue;
}
newMatrix[rowNum][lineNum++%(matrix[0].length-1)] = matrix[i][j];
}
rowNum++;
}
return newMatrix;
}
public static void main(String[] args) {
// double[][] test = {{2,1,1},{3,1,2},{1,-1,0}};
// double[][] test = {{3,-2,0,0},{5,-3,0,0},{0,0,3,4},{0,0,1,1}};
double[][] test = {{0,0,0,1,2},{0,0,0,2,3},{1,1,0,0,0},{0,1,1,0,0},{0,0,1,0,0}};
double result;
try {
double[][] temp = new double[test.length][test[0].length];
for (int i = 0; i < test.length; i++) {
for (int j = 0; j < test[i].length; j++) {
temp[i][j] = test[i][j];
}
}
//先计算矩阵的行列式的值是否等于0,如果不等于0则该矩阵是可逆的
result = mathDeterminantCalculation(temp);
if (result == 0) {
System.out.println("矩阵不可逆");
}else {
System.out.println("矩阵可逆");
//求出逆矩阵
double[][] result11 = getInverseMatrix(test,result);
//打印逆矩阵
for (int i = 0; i < result11.length; i++) {
for (int j = 0; j < result11[i].length; j++) {
System.out.print(result11[i][j]+" ");
}
System.out.println();
}
}
} catch (Exception e) {
e.printStackTrace();
System.out.println("不是正确的行列式!!");
}
}
}
java实现求可逆矩阵使用代数余子式的形式
最新推荐文章于 2021-04-15 18:50:53 发布