今天呢,我跟大家来总结一下二分查找算法的基本思想和3道例题。
二分算法的基本思想:
二分法是一个非常高效的算法,它常常用于计算机的查找过程中。
先玩一个小游戏。预先给定一个小于100的正整数x,让你猜,猜测过程中给予大小判断的提示,问你怎样快速地猜出来?
这样猜测最快,先猜50,如果猜对了,结束;如果猜大了,往小的方向猜,再猜25;如果猜小了,往大的方向猜,再猜75;…,每猜测1次就去掉一半的数,就这样可以逐步逼近预先给定的数字。这种思想就是二分法。这样子所有的都是靠2的多少次方来解决的,所有效率比枚举快很多了。
在用二分法进行查找时,查找对象的数组必须是有序的,即各数组元素的次序是按其值的大小顺序存储的。其基本思想是先确定待查数据的范围(可用 [left,right] 区间表示),然后逐步缩小范围直到找到或找不到该记录为止。具体做法是:先取数组中间位置(mid=(left+right)/2)的数据元素与给定值比较。若相等,则查找成功;否则,若给定值比该数据元素的值小(或大),则给定值必在数组的前半部分[left,mid-1](或后半部分[mid+1,right]),然后在新的查找范围内进行同样的查找。如此反复进行,直到找到数组元素值与给定值相等的元素或确定数组中没有待查找的数据为止。因此,二分查找每查找一次,或成功,或使查找数组中元素的个数减少一半,当查找数组中不再有数据元素时,查找失败。