第六章 图
1、图的基本概念
-
图的定义:图(G)是由顶点集(V)和边集(E)组成,记为G=(V,E)。其中,V表示图G中顶点的有限非空集;E表示图G中顶点之间相互关系(边)集合。若V={v1,v2,v3….},则用|V|表示图中顶点的个数。若E={(u,v)| u 属于 V, v 属于 V},则用|E|表示图中边的条数。
-
注意:线性表可以是空表,树可以是空树,但图不可以是空图。在图中顶点集V一定是非空的,但边集E可以是空的。
-
有向图:若E是有向边的有限集合时,则为有向图。
-
弧:是顶点的有序对。
-
无向图:若E是无向边的有限集合时,则为无向图。
-
简单图:如果一个图满足,不存在重复边和不存在顶点到自身的边,则为简单图。
-
多重图:如果一个图满足,某两个顶点之间的边数大于1条边,又允许顶点通过一条边和自身相关联。(在数据结构中,今讨论简单图)
-
完全图:对于无向图:|E|的取值范围为0~n(n-1)/2,有n(n-1)/2条边的无向图称为完全图。
-
有向完全图:对于有向图来说,|E|的取值范围0~n(n-1),有n(n-1)条弧的有向图称为有向完全图。
-
子图:设有两个图G=(V,E)和G’=(V’,E’),若V’是V的子集,且E’是E的子集,则称G’是G的子图。(并非任何的顶点子集和边子集,都可以构成G的子图)
-
连通:在无向图中,若从顶点v到顶点w有路径存在,则称v和w是连通的。
-
连通图:若图G中的任意两个结点都是连通的,则称为图G为连通图。<