数据结构——名词解释(六)

本文详细介绍了图的基本概念,包括有向图、无向图、简单图和完全图等类型,以及顶点的度、入度和出度。此外,还讨论了图的存储方式如邻接矩阵和邻接表,并提到了图的遍历方法如广度优先搜索和深度优先搜索。最后,讲解了最小生成树和最短路径的相关算法,如普里姆和克鲁斯卡尔算法,以及Dijkstra和Floyd算法。
摘要由CSDN通过智能技术生成

第六章 图

1、图的基本概念

  • 图的定义:图(G)是由顶点集(V)和边集(E)组成,记为G=(V,E)。其中,V表示图G中顶点的有限非空集;E表示图G中顶点之间相互关系(边)集合。若V={v1,v2,v3….},则用|V|表示图中顶点的个数。若E={(u,v)| u 属于 V, v 属于 V},则用|E|表示图中边的条数。

  • 注意:线性表可以是空表,树可以是空树,但图不可以是空图。在图中顶点集V一定是非空的,但边集E可以是空的。

  • 有向图:若E是有向边的有限集合时,则为有向图。

  • 弧:是顶点的有序对。

  • 无向图:若E是无向边的有限集合时,则为无向图。

  • 简单图:如果一个图满足,不存在重复边和不存在顶点到自身的边,则为简单图。

  • 多重图:如果一个图满足,某两个顶点之间的边数大于1条边,又允许顶点通过一条边和自身相关联。(在数据结构中,今讨论简单图)

  • 完全图:对于无向图:|E|的取值范围为0~n(n-1)/2,有n(n-1)/2条边的无向图称为完全图。

  • 有向完全图:对于有向图来说,|E|的取值范围0~n(n-1),有n(n-1)条弧的有向图称为有向完全图。

  • 子图:设有两个图G=(V,E)和G’=(V’,E’),若V’是V的子集,且E’是E的子集,则称G’是G的子图。(并非任何的顶点子集和边子集,都可以构成G的子图)

  • 连通:在无向图中,若从顶点v到顶点w有路径存在,则称v和w是连通的。

  • 连通图:若图G中的任意两个结点都是连通的,则称为图G为连通图。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值