机器学习之聚类算法与应用(六)

聚类算法与应用

通常我们会使用”距离“衡量样本的远近

不同的场景:

  • 图片检索:图片内容的相似度
  • 图片分割:图片的像素、颜色的相似度
  • 网页聚类:文本内容的相似度
  • 社交网络聚类:关注人群,喜好、喜好内容
  • 电商用户聚类:点击、购买商品、行为序列

不管用什么样的评定内容,最终都会把样本表示成向量,向量的距离该如何表示?

  • 欧氏距离
    d ( x , z ) = ∣ ∣ x − z ∣ ∣ = ∑ d = 1 D ( x d − z d ) 2 d(x,z)=||x -z||=\sqrt{\sum_{d=1}^D(x_d-z_d)^2} d(x,z)=xz=d=1D(xdzd)2

  • 曼哈顿距离
    d ( x , z ) = ∑ d = 1 D ∣ x d − z d ∣ d(x,z) = \sum_{d=1}^{D}|x_d-z_d| d(x,z)=d=1Dxdzd

  • 余弦距离(一般不用,数学上证明不了收敛)

  • 核函数映射后距离

什么是无监督学习?无监督学习=>只要数据,不要标记结果

下面简单叙述三种聚类算法:

可视化网址:https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

  1. K-MEANS

    • 输入:

      input1:N个样本

      input2:拟定的聚类个数K

    • 初始化:

      两种方法:1.随机初始化K个D维的向量 2. 选取K个不同的样本点作为初始聚 类中心

    • 迭代直至收敛

      对于每个样本xn都指定其为离其最近的聚类中心的cluster,重新计算聚类中心

    那么怎么才算做收敛呢?

    • ​ 聚类中心不再有变化
    • 每个样本到对应聚类中心的距离之和不再有很大变化

    下面举一个栗子说明聚类过程:

    1. 随机初始化两个点

在这里插入图片描述

  1. 连接这两个点,做其垂直平分线,将样本分为两个类

    在这里插入图片描述

  2. 重新计算质心

    在这里插入图片描述

    1. 连接这两个点,做其垂直平分线

在这里插入图片描述

5.	重复以上步骤,直到收敛

对于上面的过程,定义如下的损失函数
J ( u , r ) = ∑ n = 1 N ∑ k = 1 K r n k ∥ x n − u k ∥ 2 J(u,r) = \sum_{n=1}^{N} \sum_{k=1}^{K}r_{nk}\lVert x_n-u_k \lVert^2 J(u,r)=n=1Nk=1Krnkxnuk2
我们在迭代的过程就是最小化以上的损失函数,其中 u 1 u 2 . . . u k u_1 u_2 ...u_k u1u2...uk 是k个聚类中心,$r_{nk} $ 表示x_n 是否属于聚类k

局限性:

  • K-means对异常点的“免疫力”很差,我们可以通过一

    些调整(比如中心不直接取均值,而是找均值最近的样

    本点代替

  • 这个算法真的是初始聚类中心敏感的

  • 无法对带状的数据进行分类

    在这里插入图片描述

优势:简单,快速,适合常规数据集

关于K的选定

选的不好确实会出现下面的状况

在这里插入图片描述

很经典的“肘点”法,选取不同的K值,画出损失函数曲线,选取“肘点”值,如下图所示:

在这里插入图片描述

  1. 层次聚类

    在这里插入图片描述

    简单点来说,层次聚类有点像我们构造哈夫曼树:

     1. 初始化每个样本为一个类
     2. 计算每个样本之间两两距离
     3. 将其中两个距离最近的类划分为一类,重复1~3步骤,直到只剩下一类
    

    类与类之间的距离该怎么算?

    在这里插入图片描述

    第一、二种方法容易受到个别的离群点影响

    K-means VS 层次聚类?
    ① K-means这种扁平聚类产出一个聚类结果(都是独立的)
    ② 层次聚类能够根据你的聚类程度不同,有不同的结果
    ③ K-means需要指定聚类个数K,层次聚类不用
    ④ K-means比层次聚类要快一些(通常说来)

  2. DBSCAN算法(Density-Based Spatial Clustering of Applications with Noise)

    基本概念

    • 核心对象:若某个点的密度达到算法设定的阈值则其为核心点。(即 r 邻域内点的数量不小于 minPts)

    • ϵ-邻域的距离阈值:设定的半径r

    • 直接密度可达:若某点p在点q的 r 邻域内,且q是核心点则p-q直接密度可达。

    • 密度可达:若有一个点的序列q0、q1、…qk,对任意qi-qi-1是直接密度可达的,则称从q0到qk密度可达,这实际上是直接密度可达的“传播”。

    • 边界点:属于某一个类的非核心点,不能发展下线了

    • 噪声点:不属于任何一个类簇的点,从任何一个核心点出发都是密度不可达的

    • A:核心对象 B,C:边界点 N:离群点

      在这里插入图片描述

工作流程:

在这里插入图片描述

优势:

  • 不需要指定簇个数
  • 擅长找到离群点(检测任务)
  • 可以发现任意形状的簇
  • 两个参数就够了

在这里插入图片描述

劣势:

  • 高维数据有些困难(可以做降维)
  • Sklearn中效率很慢(数据削减策略)
  • 参数难以选择(参数对结果的影响非常大)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值