4 APS算法

(1)数学规划算法

广泛使用混合整数线性规划(MILP)或混合整数非线性规划(MINLP)。对化工企业建立数学规划模型,求解总成本最低条件下的生产任务的分配问题以及产品的分配问题。也可以建立了一个通用的MINLP模型,目标是最小化最大完工时间(make span),确定投产批量。采用贪婪启发算法,并与其他启发式算法进行比较。

需要考虑计划期长度、原料可用性、有限负荷(finite loading),清洁操作(cleaning operation),通过Cplex计算的混合整数规划。但是数学模型几乎不可重用,即使微小的变化也可能使得所选算法效果变得极差。数学规划中对实际问题求解的计算量太大,如分枝定界法(B&B)。为了提高效率采用各种改进形式的B&B算法或者简化计算技术. 采用启发式算法为了考虑更简单的模型。

(2) 约束规划

能够成功的用来解决制造业生产计划问题的约束传播代表是ILOG Optimization Suite。当必须在计划中考虑大量约束时,约束规划非常适用。一种适合于流程行业需求的方法。这种方法采用约束定向搜索(constraint directed search CDS)解决问题的组合部分,并且确定剩余的(N)LP问题是否解决。组合部分的解中包括了,通过对变量赋值和规定变量值和顺序的启发规则进行的用户干预。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值